

CB_London-Dec2004_orogen_TM_Fig1a.ai

Beaumont_Figure 1b

Beaumont_Figure 1c

Beaumont_London-Dec2004_GRL-ts1_model-properties_F02.ai

Beaumont_Figure3_Part1.ai

Beaumont_Figure3_Part1_GRL-62_Lgid-matcol_pro.ai

Beaumont_Figure 3_Part 2

Beaumont_Figure3_Part2_GRL-62_Lgrid-matcol.ai

b) t = 20 My; $\Delta x = 600 \text{ km}$

c) t = 30 My; $\Delta x = 900 \text{ km}$

Beaumont_Figure 4_Part1

Beaumont_Figure4_Part1_GRL-62_Tvel-radcol_pro.ai

Beaumont_Figure4_Part2

Beaumont_Figure4_Part2_GRL-62_Tvel-radcol_retro.ai

Beaumont_Figure5_Part1

 $Beaumont_Figure5_Part1_GRL-63_Lgrid-matcol_pro.ai$

Beamont_Figure5_Part2

Beaumont_Figure5_Part2_GRL-63_Lgrid-matcol_retro.ai

b) t = 30 My; $\Delta x = 900 \text{ km}$

c) t = 40 My; $\Delta x = 1200 \text{ km}$

	- (-	<u> </u>	
		-	

d) t = 50 My; $\Delta x = 1500 \text{ km}$

e) t = 60 My; $\Delta x = 1800$ km 0 km 200V:H = 1:1

Beaumont_Figure6_Part1

Beaumont_Figure6_Part1_GRL-60_Tvel-radcol_pro.ai

Model LHO-2 retroa) t = 0; $\Delta x = 0 \text{ km}$ A₁ = 2.0 μW/m³ $A_2 = 0.75 \,\mu\text{W/m}^3$ _____ V_R = -1.5 cm/y b) t = 30 My; ∆x = 900 km c) t = 40 My; $\Delta x = 1200 \text{ km}$ d) t = 50 My; $\Delta x = 1500 \text{ km}$ ////... e) t = 60 My; $\Delta x = 1800 \text{ km}$ Wilh. = km V:H = 1:1 200 0

Beaumont_Figure6_Part2

Beaumont_Figure6_Part2_GRL-63_Tvel-radcol_retro.ai

Beaumont_Figure7_Part1

Beaumont_Figure7_Part1_GRL-60_Lgrid-matcol_pro.ai

Beaumont_Figure7_Part2

Beaumont_Figure7_Part2_GRL-60_Lgrid-matcol_retro.ai

b) t = 30 My; $\Delta x = 900 \text{ km}$

c) t = 40 My; $\Delta x = 1200 \text{ km}$

	- E				
			=		
			~ ~ -		
 		/			
 		=			
 				$=$ \sim $=$ \sim	\sim
					1

d) t = 50 My; $\Delta x = 1500 \text{ km}$

Beaumont_Figure8_Part1

Beaumont_Figure8_Part1_GRL-60_Tvel-radcol_pro.ai

Model LHO-3 retroa) t = 0; $\Delta x = 0 \text{ km}$ V_R = -1.5 cm/y b) t = 30 My; ∆x = 900 km $A_1 = 2.0 \,\mu\text{W/m}^3$ A₂ = 0.75 μW/m³ c) t = 40 My; $\Delta x = 1200 \text{ km}$ Ξ d) t = 50 My; ∆x = 1500 km ЦШ/ш IIIXIIII 111111 e) t = 65 My; $\Delta x = 1950 \text{ km}$

Beaumont_Figure8_Part2

Beaumont_Figure8_Part2_GRL-60_Tvel-radcol_retro.ai

Upper Mantle Scale Models

• Himalayan - Tibetan scale, continent-continent collision, thermal-mechanical coupled models

 $V_p = 5 \text{ cm/yr}$ $0 \rightarrow \sim 40 \text{ Myr}$

	$10 \rightarrow 2$	D(WOIXIO)	
Upper Mantle	$15^{\circ} \rightarrow 2^{\circ}$	B* (WOI)	

LHO-LS2 as LHO-LS1 except

 ρ (kg/m³)

2950 → 3100

2800

3.300

3.260

Model LHO-LS1

Beaumont_Figure10_LHO-LS-test56_6-18-30-42My.ai

Model LHO-LS2

Beaumont_Figure 11.ai

Beaumont_Figure12

Beaumont_Figure 13

Beaumont_London-Dec2004_Flow-modes_Figure13_v2..ai

a) Mode 1: Homogeneous Channel Flow

Driven by Gravitational forcing of Channel

- $\Delta P_{max} = P_1 P_2 \sim 200 \text{ MPa}$ Requires $\eta_e \le 10^{19} \text{ Pa.s}$ when h ~ 20 km for efficient, $\overline{V}_c \sim 1$ cm/yr, flows
- May require melt weakening for $\eta_e < 10^{19}$ Pa.s
- Many orogens may be 'sub-critical', $\eta_e > \eta_{crit}$

b) Mode 2: Heterogeneous Channel Flow

Driven by Gravitational forcing of Channel

+ Tecto	onic forcing by Heterogeneitie	S	
P ₂	Plateau	P ₁	
Foreland	Р	1 > P2	
W	Channel Flow	η _e (-	<
			*

- VP 'Weak' 'Strong' e.g. Heterogeneous Strong / Weak lower crust η<mark>†</mark> ηs
- · Weak lower crust tectonically expelled to create Heterogeneous Channel Flow
- May require melt weakening for $\eta_e < 10^{19}$ Pa.s

c) Mode 3: Hot Fold Nappes

Driven by Tectonic forcing by Indentor

- e.g. Indentor of Strong (Refractory) lower crust
- Weak lower crust +/- mid-crust tectonically expelled as Hot Fold Nappes
- Mid-crust sub-critical for channel flow
- When is an Indentor strong?
- some experimental results

Beaumont_Figure14

Beaumont_London-Dec2004_Modes1-2-3-conclusion_Figure14_43percent.ai