Table 1. Parameters used in models (see also Figure 1).

Parameter

 V_S

Meaning

Value(s)

Parameters and nominal values a) Mechanical parameters

ρ_{crust}	crustal density	2700 kg/m^3
ρ_{mantle}	mantle density	3300 kg/m^3
D	flexural rigidity (isostasy model)	$10^{22} \mathrm{Nm}$
	crustal thickness	35 km
	lower crustal thickness	see below
θ	subduction dip angle	20°
ϕ_{eff} (0 - 10 km)	effective internal angle of friction	5°
$\phi_{\rm eff}$ (10 - 35 km)	C	15 [°]
Ċ	cohesion	10 MPa
Р	solid pressure	Pa
J_2^{\prime}	second invariant of the deviatoric	Pa ²
	stress tensor	
$\eta_{eff}^{v} = B * \cdot (\dot{I}_{2}^{\prime})^{(1-n)/2n} \cdot \exp[Q/nRT_{K}]$	general equation for effective viscosity	
\dot{I}_2'	second invariant of strain rate tensor	s ⁻²
R	gas constant	8.314 J/mol ^o K
T_K	absolute temperature	°K
B^* , <i>n</i> , <i>Q</i> as below	1	
WO(0-10 km)	wet Black Hills quartzite flow law	n = 4.0
2	[after Gleason and Tullis, 1995]	$B \approx 2.92 \times 10^{6} \text{ Pa.s}^{1/4}$ Q = 223 kJ/mol
$WO \ge 5$ 10 – 25 km	modified wet Black Hills quartzite	g = 223 kJ/mor $B^* = B^* (WO) \times 5$ (etc.)
or $10 - 20$ km	flow law	$D = D (n \not g) \neq 0 (c(c, l))$
(see below)		
DMD	dry Maryland diabase flow law	n = 4.7
	[after Mackwell et al., 1998]	$B^* = 1.91 \times 10^5 \text{ Pa.s}^{1/4.7}$
		O = 485 kJ/mol
DMD/f (see below)	scaled dry Maryland diabase flow law	$\widetilde{B}^* = B^* (DMD) / f$
'melt weakening'	linear reduction in effective viscosity	$n_{700} =$ flow law value
6	over T range 700-750°C	$n_{750} = 10^{19}$ Pa.s
	for WO only	1750
	length of Eulerian model domain	2000 km
b) Crustal scale models basal ve	elocity boundary conditions	
V _P	pro-side (convergence) velocity	1.5 cm/y
$\dot{V_R}$	retro-side velocity	-1.5 cm/y

retro-side velocity -1.5 cm S-point velocity (subduction advance) 0 cm/y c) Thermal parameters

Κ	thermal conductivity	2.00 W/m°K
κ	thermal diffusivity	$1.0 \ge 10^{-6} \text{ m}^2/\text{s}$
	$(\kappa = K / \rho C p$, where $\rho C p = 2 \times 10^6$)	
T_s	surface temperature	0°C
T_a	temperature at lithosphere/ asthenosphere boundary	1350°C
q_m	basal mantle heat flux	20 mW/m^2
q_s	initial surface heat flux	71.25 mW/m^2
A_1 (0-20 km)	upper crustal heat production	$2.0 \mu\text{W/m}^3$
<i>A</i> ₂ (20-35 km)	lower crustal heat production	$0.75 \ \mu W/m^3$

d) Crustal scale models surface denudation

slope $\mathbf{x} f(t) \mathbf{x} g(x)$	denudation rate (m/y)			
slope	local surface slope measured from finite	local surface slope measured from finite element mesh		
f(t)	time function	constant		
	specifies how denudation rate (m/y) varies with time who	en $g(x)$ and slope = 1		
g(x)	spatial function			
	specifies how denudation rate varies with position x	g(x) = 0 = arid		
		g(x) = 1 = wet		

No denudation in Upper Mantle scale models

e) Specific model parameters – Crustal Scale Models

LHO-1	
Lower crust $(25 - 35 \text{ km})$	B* (DMD/5)
	15°
LHO-2	
Lower crust (25-35 km)	
Alternating 250 km long blocks of	B* (DMD)
	$B^*(DMD/10)$

LHO-3 Lower crust (25-35 km) 250 km long blocks arranged symmetrically with respect to S. Blocks have properties *B** (*DMD*), *B** (*DMD*/4), *B** (*DMD*/8), *B** (*DMD*/12), *B**(*DMD*/16), *B** (*DMD*/20) Order is from external to internal part of model.

f) Specific model parameters – Upper Mantle Scale Models

LHO-LS1 and LHO-LS2 Properties same as crustal models except where noted Model domain Eulerian mesh upper crustal density 2800 kg/m³

	lower crustal density	$2950 - 3100 \text{ kg/m}^3$
	('basalt-eclogite', see text)	
	lithospheric mantle density	
	LHO-LS1	3300 kg/m^3
	LHO-LS2	3310 kg/m^3
	sublithospheric mantle density	3260 kg/m^3
ϕ_{eff}	strain softening	$15^{\circ} \rightarrow 2^{\circ}$
	2 nd invariant of strain	$0.5 \rightarrow 1.5$
$WQ \times 5$ (0 – 28 km)		$B^* = B^* (WQ \times 5)$
DMD/10 (28 – 34 km)		$B^* = B^* (WQ \times 10)$
<i>WOl x 10</i> (34 – 100 km)		$B^* = B^* (WOl \times 10)$
WOl (100 – 600 km)		$B^* = B^* (WOl)$
α	volume coefficient of thermal expansion	$3 \times 10^{-5}/^{\circ}C$
Velocity boundary conditions		
$V_{\rm P} (0 - 100 \rm km)$		5 cm/y
$V_{\rm R} (0 - 100 \rm km)$		0 cm/y
	small flux through side boundaries (see text)	
	,	

Other boundaries, free slip; upper surface, free surface