
January, 2007
Mozart_plot.x: code written by: Philippe Fulsack
IDL: scripts written by Sergei Medvedev

Post-processing SOPALE Output

Geodynamics Group
Department of Oceanography

Dalhousie University
Halifax, NS, B3H 4J1 Canada

http://geodynamics.oceanography.dal.ca

January, 2007

1 TABLE OF CONTENTS

1 Table of Content
2 Introduction
3 Post-processing using “Mozart_plot.x” (code written by Philippe Fulsack, User Guide
prepared by Bonny Lee)
4 Post-processing using Interactive Language Data (IDL) Scripts (code written by Sergei
Medvedev)

4.1 Hardware and Software Requirements
4.2 IDL_M-S Program Structure

4.2.1 Directory Structures
4.2.2 IDL scripts Overview
4.2.3 Setting up IDL post-processing

4.3 IDL Post-processing procedures
4.3.1 Transferring model results to ‘Data Directory’
4.3.2 Copy and modify IDL scripts
4.3.3 Conversion of Microfem output
4.3.4 Read Data
4.3.5 Plotting Model Results

4.4 Common plotting tasks
 4.4.1 Common Modifications

4.4.2 Plotting Lagrangian grid and Eulerian coloring
 4.4.3 Plotting Strain Rate and Velocity
 4.4.4 IDL script for standard plotting
 4.4.5 Other examples of Plotting Tasks
5 Program Description (written by Sergei Medvedev)
 5.1 Parameters and Variables
 5.2 Descriptions of IDL_M-S Scripts
6 References

 2

2 INTRODUCTION

SOPALE produces various binary files as output (Fig. 1). These SOPALE output files need to be
post-processed before the viewing, analyzing/ interpreting of model results. “P690” is the computer
system where members of the Dalhousie GeoDynamics Group run SOPALE models. See
http://geodynamics.oceanography.dal.ca/bonny/docs/sopale_overview.txt for the explanation of
SOPALE output.

Figure 1: Directory structure of the Sopale
input and output (binary format). The
SOPALE outputs are stored in the
subdirectory “Sopale/r30/”. The restart files
are g01_p00_f00_o and g02_p00_f00_o. The
file g01_p00_f01_o is the Eulerian output of
frame 1 and g02_p00_f01_0 is the
Lagrangian output of frame 1. The input file
“matlab_i” specifies the parameters which
will be saved in the MatLab outputs and the
numbers of saved outputs. MatLab outputs
are stored in the subdirectory “matlab”.

Users can analyze model results by using the numerical values or by the post processing procedures.
Bonny Lee wrote the program “out2asc” to obtain the values of selected parameters from the
SOPALE outputs. The model results can also be post-processed by using various softwares such as
MatLab, Generic Mapping Tool (GMT), Interactive Data Language (IDL) (Fig. 2). This document
will discuss a post-processing method, which the Dalhousie Geodynamics Group is currently using
the most - the Interactive Data Language (IDL) scripts.

Figure 2: Various methods of analyzing
SOPALE outputs: interpretation of the
numerical values, SOPALE “Mozart_plot.x”
post-processing, IDL post-processing. The
IDL scripts are run on Users’ home
directories while the “Mozart_plot.x” can be
run on the p690.

The postprocessing program "mozart_plot.x" was written by Philippe Fullsack. As explained in the
user's guide (http://geodynamics.oceanography.dal.ca/bonny/docs/sopale_postproc.txt), the
program mozart_plot.x is controlled by a combination of text input files and interactive graphic
interface. The text input files specify parameters such as window size, the output frames, contour
lines, etc. You can select options such as field values and which grids to plot in the graphic
interface. Mozart_plot.x displays the plots on screen, using X Window graphics, and can save
outputs of the screen plot as the postscript format (Fig. 3).

 3

http://geodynamics.oceanography.dal.ca/bonny/docs/sopale_overview.txt
http://geodynamics.oceanography.dal.ca/bonny/docs/sopale_postproc.txt

Figure 3: A postscript file created from “Mozart_plot.x” for a SOPALE salt model.

A set of the IDL scripts was developed by Sergei Medvedev during his postdoctoral work with the
Geodynamics Group at the Department of Oceanography, Dalhousie University. These IDL scripts
have been used to post-process Microfem and Sopale model results, which were presented in
various journal papers and conference presentations. These IDL scripts were written for specific
studies and for the code at the time Serge was working at the Dalhousie; therefore, users might need
to modify the IDL scripts for the new codes with additional features.

Figure 4: Plotting Lagrangian particles using IDL
scripts. Source: Jamieson et al. GSL, in press.

The purpose of this User's Guide is to have an interface between IDL documentation and the
specific IDL scripts which Sergei has written. Users can also find extra information from the online
version of IDL User guide.

Here are the links to some IDL related sites.
http://www.dfanning.com/
http://www.informatik.fh-mannheim.de/idl/onlguide.pdf.
You can search for the IDL Reference Guide (IDL version 6.1, July 2004) from this site
http://www.informatik.fh-mannheim.de/idl/refguide.pdf
http://www.informatik.fh-mannheim.de/idl/quickref.pdf
Bonny has also put the IDL Reference Guide (IDL version 5.6, Research System Inc., October
2002) on the site http://geodynamics.oceanography.dal.ca/bonny/docs/idl_scripts/idlrefguide.pdf.

3 POST-PROCESSING USING “Mozart_plot.x” (code written by Philippe Fulsack, User
Guide written by Bonny Lee)
http://geodynamics.oceanography.dal.ca/bonny/docs/sopale_postproc.txt

 4

http://www.dfanning.com/
http://www.informatik.fh-mannheim.de/idl/onlguide.pdf
http://www.informatik.fh-mannheim.de/idl/refguide.pdf
http://www.informatik.fh-mannheim.de/idl/quickref.pdf
http://geodynamics.oceanography.dal.ca/bonny/docs/idl_scripts/idlrefguide.pdf
http://geodynamics.oceanography.dal.ca/bonny/docs/sopale_postproc.txt

4 POST-PROCESSINGUSING INTERACTIVE LANGUAGE DATA (IDL) SCRIPTS

4.1 Hardware and software requirements

Hardware
IDL are currently installed on workstations Firedrake and Castor, Geodynamics Group at Dalhousie
University.

Printers are specified in the IDL script ‘print.pro’.
Printers of the Dalhousie Geodynamics Group are as follows:
Color Printer: ‘Beaumontcolour’
Black and white printer: ‘geophys-printer.ocean.dal.ca’

Remote Users should save the postscript files after the IDL post-processing session and send those
postscript files directly to their printers.
Hardware requirements:
RAM: should fit User's data.
Color: 256 colors or more. The number of colors used by IDL_M-S is limited to less than 256.

Software
1. The IDL_M-S code has been tested on IDL versions 5.02, 5.4 and 5.5. More information related
to the most recent version of IDL can be found at the website http://www.ittvis.com/idl/

2. Animation can be compiled by using gifcicle.
3. GIF creator.
The easiest way to create gif files is to have license of IDL version 5.5 (or later) and the fee paid to
UNISYS for the GIF compression (LZW) patent.

 5

http://www.ittvis.com/idl/

4.2 IDL_M-S PROGRAM STRUCTURE

4.2.1 Directory Structures
You will need to create two types of directories in the same machine for post-processing using
IDL_M-S scripts – ‘Data Directory’ and ‘IDL Scripts Directories’.

a) Data Directory: for storing the model output files. SOPALE model results from p690 will need
to be transferred to User's home directory (castor, firedrake, etc.) before the IDL post-processing.
Users decide the name and the path of this directory to suit their directory trees. The path of the
“Data Directory” should be specified in the IDL script “session.pro”. If the path of ‘Data Directory’
is not specified in the IDL script ‘session.pro’, users can still read the model output after typing the
directory path name during the post-process model results (see Section 4.4).

b) “IDL Scripts” Directory: for storing Sergei’s IDL_M-S scripts and User’s modified scripts. We
call them “IDL Software” Directory and “IDL Post-processing” Directory in this document. Users
can give these directories any names as long as the directory names and paths are specified clearly
in the file “session.pro”, which will be stored in the “IDL Postprocessing” Directory.

“IDL Software” Directory: for storing the original IDL_M-S scripts. An overview of IDL_M-S
scripts is presented in Section 4.2.2. A list of IDL_M-S scripts (source code) and their
classifications are summarized in Table 1. Currently (January 2007), the source code can be copied
from the castor directory /usr/local/idlscripts/.

“IDL Post-processing” Directory: From this directory, you will run the IDL scripts to read the
SOPALE outputs, which are stored in the “Data Directory”, and run some IDL scripts to plot
diagrams.

- Users will need to modify some parameters for their plots such as plot dimension, color
scheme, etc.

- User will need to copy the related programs from 'IDL_M-S' Software Directory to the Post-
processing Directory and make changes here. This will allow Users to save their own
settings and the changes will not affect the main software directory. Two files should be
copied into User’s Post-processing Directory are ‘session.pro’ and ‘default.pro’.

- Users can modify IDL scripts for specific applications and rename these scripts with
appropriate names. For example, you can modify the file ‘post.pro’ to plot the Thrust-and-
Fold beft models and rename the script as ‘post-TFB.pro’.

- The postscript files created from IDL_M-S programs will be stored in this “IDL Post-
processing” directory. Users have options to name, save and/or print their postscript files
(see Figure 6).

Sergei’s descriptions of some programs are included in Section 6.

We suggest two examples of the directory structures, which you can choose whichever work best
for you. Figures 5a and 5b illustrate examples of the directory structures. You can decide the
directory names and the path of these directories. The IDL_M-S source code is currently located on
castor, directory /usr/local/idlscripts/.

Structure A has two “IDL Scripts” directories – one directory for storing source code or main
programs (Software Directory) and one directory for storing the IDL scripts which are modified by

 6

users and for storing postscript files. You will run the IDL script from the “IDL post-processing”
directory if you choose to use this structure. The IDL post-processing procedures discussed here
will be based on the Directory Structure A.
Advantages: It is very clear which files you have modified and the source code is untouched.

Figure 5a. IDL scripts are stored in two
directories. The Software Directory
stores the source scripts and the “IDL
post-processing directory stores User’s
modified script.

Structure B has one “IDL Scripts” directory only. All IDL_M-S source code and User’s modified
scripts are stored in the same directory. You can run the post-processing from this directory. If you
find it is hard to search through a long list of IDL scripts to find your modified scripts, it is good to
make subdirectories to store your modified IDL scripts for specific purposes. For example: Scripts
for Thrust-and-Fold Belt models, Salt models, IDL scripts for animation, IDL scripts for plotting
injected Lagrangian particles, etc.

Advantages: You have a set of IDL scripts that will work for a specific task and you do not have to
worry about which file is the most current one.
Disadvantages: There are many IDL scripts in the same directory. After the postscript files are
created, they will also be in this directory. Since the all the source code and modified IDL scripts
are stored in the same directory, it is important to keep track of your modifications to any scripts.

Figure 5b. The IDL_M-S source code is
stored in the same directory with the
User’s modified IDL scripts. The
subdirectory “injected-Lag-disk-scripts”
stores all IDL scripts related to this type
of plotting.

 7

4.2.2 IDL Scripts Overview:

A set of IDL scripts were written for post-processing model results of SOPALE and Microfem
models and we call them as IDL_M-S software. If you already have a template of the IDL scripts
for plotting certain routine plotting, the post-processing procedures can be fairly simple.

The IDL procedures can be
summarized as follows:
IDL> .run read.pro

- Read the data from SOPALE
output files or Matlab output
files.

- Put the data into arrays in
memory. The script
“download.pro specifies the
names of arrays for each field.
The unit conversion is also
done in this step.

IDL> .run post*.pro
- Run the “plotting” program,

for example, the script
onfig*.pro or animation*.pro.
Figure 5 illustrates the
structure of post-processing
routines and the actions when
you run the “plotting” scripts.
The steps including setting up
the environment (color
scheme, size of plots, styles of
axis, font size, etc.),
compilation of plotting routine
and plotting the diagrams on
screen using X Window
display.

- Users will be asked to select
options for saving and/or
printing the postscript file. T
postscript files can conta
single frame or multiple
frames.

he
in one

Figure 6: Flow chart showing the structure of the IDL plotting scripts.

All programs in the IDL_M-S Software Directory are summarized in Table 1. The IDL scripts are
grouped into five different types based on the structure shown in Figure 5. This grouping is done in
an attempt to help users, who want to reorganize their directory and to modify/create new IDL

 8

scripts. The field data can be plotted in the same diagram with model output (Type 5). Sergei
included two example files in Type 5 but these particular files were not used post processing the
SOPALE output.

Table 1: Types of programs in IDL_M-S Software Directory (classified by Sergei Medvedev,
2002).
Type 1: Compilation program/routines 51) read_m_therm_propr.pro (include,m,10%, 2)

52) read_p_data.pro (include,s,20%, 2) 1) anim_bc.pro (include,s,80%, 1)
53) read_s_depth.pro (include,s,10%, 2) 2) anim_clos_gif.pro (include,ms,30%, 1)
54) read_s_eul.pro (include,s,10%, 2) 3) anim_clos_mpg.pro (include,ms,?%, 1)
55) read_s_finish.pro (include,s,10%, 2) 5) anim_panel_grid&mat.pro (include,ms,40%, 1)
56) read_s_info.pro (include,s,25%, 2) 6) anim_panel_mat.pro (include,ms,40%, 1)
57) read_s_lagr.pro (include,s,10%, 2) 9) animation.pro (programme,ms,100%, 1)
58) read_s_mech_box.pro (include,s,10%, 2) 22) e2.pro (include,ms,70%. 1)
60) session.pro (include,ms,80%, 1 and 2) 33) mat_box (include,ms,50%, 1)
62) smoothing.pro (function,ms,10%, 2) 34) matcol.pro (include,ms,50%, 1 and 4)
 35) panel_templ.pro (include,ms,100%, 1)
Type 3: Setting Environment 40) read.pro (include,ms,10%, 1)
7) anim_setup.pro (include,ms,20%, 3) 60) session.pro (include,ms,80%, 1 and 2)
17) color_set_up.pro (include(batch),ms,40%, 3) 64) Tcontour.pro (include,ms,60%, 1)
20) default.pro (include(batch),ms,100%, 3) 65) total_strain_e.pro (include,ms,60%, 1)
36) print.pro (include,ms,10%, 3) 66) total_strain_l.pro (include,ms,60%, 1)
37) print_auto.pro (include,ms,10%, 3) 67) veloc.pro (include,ms,60%, 1)
61) setting_up.pro (include,ms,30%, 3) 68) veloc_bc.pro (include,m,5%, 1)
73) zz_1x1.pro (include,ms,2%, 3) 69) veloc_g.pro (include,m,5%, 1)
 70) veloc_mantle.pro (include,m,5%, 1)
Type 4: Plotting Routines

Type 2: Data Calculation/Manipulation 8) anim_time.pro (include,ms,20%, 4)
10) arr.pro (subroutine,ms,2%, 4) 4) anim_panel_e2.pro (include,ms,20%, 2)
15) circle.pro (subroutine,ms,2%, ?) 11) bc_analysis.pro (include,ms,20%, 2)
16) color_present.pro (programme,*,0%, 4) 13) chris_read.pro (include(batch),ms,0%, 2)
18) contour_mech.pro (include,ms,20%, 4) 19) conv.pro (programme,m,10%, 2)
23) erosion_front.pro (include,m,10%, 4) 21) downloads.pro (include,ms,90%, 2)
25) finish_plot.pro (include,ms,10%, 4) 24) exponent.pro (subroutine,ms,10%, 2)
28) lagr_box.pro (include,ms,10%, 2 and 4) 26) ground_0.pro (programme,ms,10%, 2)
30) legend.pro (include,ms,50%, 4) 27) inversion.pro (programme,ms,10%, 2)
31) lgrid_l.pro (include,ms,30%, 4) 28) lagr_box.pro (include,ms,10%, 2 and 4)
32) mask.pro (include,ms,10%, 4) 29) lagr_limits.pro (include,ms,10%, 2)
34) matcol.pro (include,ms,50%, 1 and 4) 41) read_description.pro (include,ms,2%, 2)
39) radcolor.pro (include,ms,30%, 4) 42) read_dialog.pro (include,ms,2%, 2)
59) scale.pro (include,ms,80%, 4) 43) read_init_restart.pro (include,s,10%, 2)
63) suture.pro (include,m,20%, 4) 44) read_m_data.pro (include,m,10%, 2)
71) velocity_scale.pro (include,ms,25%, 4) 45) read_m_erosion.pro (include,m, 10%, 2)
72) zebra.pro (include,ms,40%, 4) 46) read_m_file.pro (include,m,2%, 2)
 47) read_m_finish.pro (include,m,10%, 2)
Type 5: Field data or other data 48) read_m_info.pro (include,m,10%, 2)
12) chris_pictures.dat (data,ms,0%, 5) 49) read_m_mech_box.pro (include,m,10%, 2)
14) cig.pro (programme,*,0%, 5)50) read_m_therm_box.pro (include,m,10%, 2)

 9

Since IDL_M-S was original written for Microfem models, some of the files only work for the
Microfem model output and was noted as ‘m’. We are currently working on bringing some of the
Microfem features into SOPALE code and will update the IDL scripts for post-processing
SOPALE output. Sergei Medvedev described the IDL scripts as the following notation (Table 1):
'm': routines for Microfem models
's': routines for Sopale models
'program': programs (end with "end" operator); use .run to run in IDL environment
'include': included files in programs or included in other 'include files' or in 'Batch file'.
'subroutine': Functions can be called by Main Level and Second Level programs
'batch': General purpose program has to be run as shell script (@default.pro, etc.)
'%': Sergei estimated the percentage of chance that the files will be modified by users.
 Files categorized as more than 50% will likely need to be modified by Users to suit the specific
purpose.
'data': field data for comparing to model results or other data.

 Routines that create data for plotting legend are as follows (usually that are routines that create
colored fields/contours):
e2.pro; matcol.pro; radcolor.pro; Tcontour.pro; total_strain_e.pro; total_strain_l.pro; veloc.pro

4.2.3 Setting up IDL
Before you start IDL post-processing:

1. Set-up IDL software communications with other software and hardware
 - printers (see comments inside routine print.pro)
 - animation (see comments in anim_clos_gif.pro)
2. Locate the Software Directory, where 'IDL_M-S software’ package is stored.
As of January 2007, the main ‘IDL_M-S software’ directories are on castor. They are listed below
in the order of new to old directories.

 [castor] /usr/local/idlscripts/ IDL_MS_newprograms/July_2005/
[castor] /usr/local/idlscripts/ IDL_MS_newprograms/June_2005/
[castor] /usr/local/idlscripts/ IDL_M-S/
[castor] /usr/local/idlscripts/ IDL_M-S/PTt-ero/

IDL will use the most current version of IDL_M-S scripts if you list the directories in the following
order in the file “session.pro”.
software_dir=’/usr/local/idlscripts/ IDL_MS_newprograms/July_2005/: /
IDL_MS_newprograms/June_2005/:/usr/local/idlscripts/ IDL_M-S/:/usr/local/idlscripts/
IDL_M-S/PTt-ero/
If there are files with the same filename in more than one directory, the file in the directory listed
first in “software_dir” will overwrite the other files.

3. Set up User's Data Directory to store the SOPALE outputs (see Figure 5a).

4. Set up the “IDL post-processing” Directory to store the IDL scripts which you modify for a
specific project (see Figure 5a).

 10

4.3 IDL POST-PROCESSING PROCEDURES

We will use the Directory Structure A (Figure 5a) in this section. The common procedures, when
you want to post-processing a new set of SOPALE model results using the IDL_M-S scripts, are as
follows:

4.3.1 Transferring model results to “Data Directory”
1. Change directory to the “Data Directory” and transfer model results from P690 to User's “Data
Directory” (see Fig. 5a).
2. Once in a while, you might want to post-process the restart files (*f00_o) or frames *p00_f99_o
of a SOPALE model in order to analyze the model results with problems. You will need to do the
following tasks:
- rename frames g01_p00_f99_o and g02_p00_f99_o to frame numbers other than *f00 or *f99 and
the existing frames numbers.
- modify the time step output in the file SOPALE1_i in order to have the correct time step printed
on the plots.

4.3.2 Copy files from IDL_M-S Software Directory to “IDL Post-processing Directory” and
Modify IDL scripts:

1. Prepare files for User's “IDL Post-processing” Directory:
- copy "session.pro" and “default.pro” from IDL_M-S Software Directory to “IDL Post-processing
Directory”. Users should always have these two scripts in the “IDL Post-processing Directory”.
- consider which files you will need to modify based on your model types and applications.
- copy those IDL scripts, which required editing, from IDL_M-S Software Directory to User's
Working Directory.

2. Edit IDL scripts in User's Working Directory to get the desired settings for your applications (see
Section 4.4).

Examples of User’s Modified scripts: These following files are in the IDL working directory with
some modifications for post-processing SOPALE output of Thin-skinned Thrust-and-Fold Belts
models.

default.pro
downloads.pro
e2_s.pro (modified from “e2.pro” to plot strain rate)
post_ts.pro (for post-processing Sopale Thin-skinned Thrust Belts models)
print.pro
session.pro (specified the location of the Software Directory and Data directory)
setting_up.pro
veloc_s.pro (modified from veloc.pro)

Notes:
The rest of IDL_M-S scripts were not modified and were stored in the “Software Directory”.

 11

The files in the User's Working Directory will overwrite the one with the same filename in the
'IDL_M-S' Software Directory. You can modify “session.pro” to set a different option.

 In the above example, files “default.pro”, “downloads.pro”, “print.pro”, “session.pro”,
“setting_up.pro” will overwrite the files with the same names in the “Software Directory”. Files
“e2_s.pro” and “post_ts.pro” were modified from e2.pro and post.pro and were saved as new
filenames.

4.3.3 Conversion of Microfem output
Only Microfem model output need to be converted before the post-processing (Fig. 6);
SOPALE models: skip this step.

* change directory to User's Working Directory;
* type: idl session (IDL prompt will be shown as:
IDL>)
* For Microfem models:
 IDL> .run conv.pro
The program convert standard outputs from Microfem
model results into data that can be read by the 'IDL_M-
S' Software.
Each set of model result will be converted once, and
the converted results are stored in the subdirectory "
in the 'User Working Directory' (see Figure 6).

idl"

rom

The program read.pro will read the data from the 'idl'
subdirectory for further post-processing.

Figure 6: Flow Chart showing the subdirectory “idl”,
which was created after running the IDL script
“conv.pro. The “read.pro” script will read the data f
SOPALE output files, or converted Microfem output
files.

- The subdirectory 'idl' contains the following files:
e2
eul
grid
info
lagr
lagrmax
material
mecset_L_1_i
microfem_e_i
press

temp
therm_mat
thermprop_i
therset_E_2_radio_i
therset_L_1_i
topo
tvel
velo_dist
veloc
visc

 12

4.3.4 Read Data (once per post-processing session of a set of model output)
Each time you want to post-process a new model, the model results should be read by running the
‘read.pro’ IDL script. After reading the data, you can then run the IDL plotting scripts or animation
programs (Fig. 7). For example, if you want to post-process two models A and B, you will type the
following commands:

 IDL> .rnew read (read data from Model A)
 IDL> .run post*.pro (run the post.pro script to plot a diagram for Model A)
 IDL> .rnew read (read data from Model B)
 IDL> .run post*.pro (run the post.pro script to plot a diagram for Model B)
 IDL> .rnew read (read data from Model A because you now want to plot another

diagram for Model A)
 IDL> .run post*.pro (run the post.pro script to plot a diagram for Model A)

- The program ‘read.pro’ should be activated by using command ‘.rnew’ to clear the memory from
the previous read session.
- The ‘read.pro’ can recognize three types of data: Microfem output after they are converted by the
conversion process; traditional output from SOPALE; and "Matlab" type of output from SOPALE.
The script automatically recognizes the type of data and reads it accordingly.
- The “read.pro” script reads the data from User's Data Directory (or Microfem subdirectory 'idl')
and save the data in memory. The array for each field will be named (eg. The ‘tex’ array holds the
field Eulerian co-ordinate, the ‘mu’ array holds the values for viscosity, etc.). Users can specify the
fields to be read by ‘read.pro’ in the file ‘downloads.pro. In Sergei’s IDL scripts, the read.pro
includes all model output frames in arrays. The units are converted during the reading data such as
the conversion of distance unit from meters to kilometers or conversion of temperature in Kelvin to
Celcius. The arrays of data are used for further plotting/calculations.

Notes:
There is not much for Users to change inside this compilation program (and in all its subroutines
read.pro).
Two files can control read.pro:
session.pro - set directories to check for data
downloads.pro – define the array to hold the data of selected fields

Bonny modified the read*.pro scripts and IDL scripts can read one frame at a time. The script
‘downloads.pro’ was edited so it allocates the arrays to hold the data for all fields instead of selected
fields. Members of the GeoDynamics Group use this set of IDL scripts to post-process Salt, Shale
and some Deep model series. The commands for reading model output files and plotting are as
follows:

IDL> .run newread.pro (instead of IDL> .rnew read.pro)
IDL> .run post*.pro

 13

Figure 6: Flow chart of the IDL_M-S Post-processing routines.

4.3.5 Plotting Model Results
a) After data have been read, the field values are stored in arrays. User can run the plotting scripts
by enter at IDL prompt ".run program name".

 IDL> .rnew read.pro
 IDL> .run post.pro (run the IDL script post.pro)
It is not necessary to type the extension ‘.pro’; therefore, the following command has the same
effect as the above command line.
 IDL> .run post

b) After the plotting is completed, Users have the option to save and/or print their postscript files
and name the postscript files. These options are specified in the IDL script ‘print.pro’ and can be
modified to match with the printer and paper setting.
Options are as follows:

 14

y: print on 8.5x11 paper size, black and white printer
l: print on 11x17 paper size, black and white printer
c: print on 8.5x11 paper size, color printer
s: save as postscript file, the program will then ask for file name (User's choice)

ls: print on 11x17 paper and save as postscript file

The postscript files are named from idl0.ps to idl10.ps to avoid interference that may cause by slow
print piping.
If you select the option "s" (save) as main or second symbol in your response, you will be able to
name the postscript file. If you decide not to give the postscript file a name, the default file name
will be given to the saved postscript file such as ‘idl0.ps’. All postscript files will be stored in the
‘IDL post-processing’ directory, which is the directory where you type commands or run IDL
scripts.

Example of the prompt on the screen after the postscript file is created:
Do you want to print? press "enter" for [no] or:
y-print, s-save PS, e-save EPS, c-color print, t-transparency, l-large print?
: ls
Give name to file without the extension .ps (idl by default)
: RBRTP-23_lag_mat
File to print: RBRTP-23_lag_mat.ps

4.4 Common plotting tasks
Currently, the IDL_M-S software has the ability to produce a variety of diagram and animation
files. When you are familiar with the IDL scripts and what they can plot, you should be able to plot
a combination of various parameters. The ‘lines’ should be plotted after the ‘fill coloring’ so the
colors will not cover the contours/lines. We present here only two examples of the common plotting
routines which we often plot for all model results. These two options are include in the IDL script
‘post-TFB-figure-Sept2006.pro’ for post-processing the Thin-Skinned Thrust-and-Fold Belt model
results. This IDL script is included in Section 4.4.4.
- Option ‘l’: plotting Mechanical Material Coloring and Lagrangian Grids;
- Option ‘s’: plotting Strain rate and Velocity vectors..

4.4.1 Common modifications:
IDL will ignore all text after the semicolon (;) and you can comment out an option by adding the
semicolon in front of the line. The most common changes when you plot diagrams are as follows:

Select output frames for plotting

frames=indgen(nt1)
;frames=[1,3,6,8]

Specify the model window for plotting
horizontal_intervals=[0.,200.]

Specify the color/greyscale scheme to color the mechanical materials, thermal materials, strain rate,
viscosity, stress, etc
 material_colors=[1,2,magenta,yellow,blue,red]
 ;material_colors=[1,2,gray(70),gray(60), gray(50)]

 15

 str_rates_col=[gray(0), gray(50),gray(60),gray(80)]

Select the paper size/orientation and numbers of panel to plot on a page

 xpr = 41. & ypr = 26 ;*** size of paper for print (in cm)

4.4.2 Strain rate and Velocity Plot
This option plots the strain rate as fill color and velocity vectors on top of the fill.

style='fill'
col=str_rates_col
@e2_s
@mask

style='contour_line'
@veloc_s
@finish_plot

@legend

Figure 7 Strain rate and Velocity plot of a Thinned-skinned Thrust-and-Fold belt model.

 16

4.4.3 Mechanical Material Coloring and Lagrangian Grid plot
This option plots the mechanical material coloring (Eulerian or Lagrangian coloring) and the
Lagrangian grids plotted on top of the color fill.

style='fill'
style_col=1
;style_col=20
@matcol
@mask

style='contour_line'
lgrid_stepx=3
lgrid_stepy=3
thick_line_freq=20
@lgrid_l

@finish_plot
@legend
@scale

Figure 8 Eulerian mechanical material colors and Lagrangian grids of a Thin-Skinned Thrust-and-
Fold Belt model. There are no grids on top of the sediment layers.

 17

4.4.4 IDL scripts for the standard plotting ‘post-TFB-figure-Sept2006.pro’
All text following the semicolon (;) are comments only because IDL will ignore these text.
The descriptions of most variables are summarized in Table 2. The variables which users might like
to modify for plotting diagrams are as follows:
frames, horizontal_intervals, yrang, material_colors, str_rates_col, plot, plot_n, xaxis_style,
yaxis_style, landscape, xpr, ypr, one2one_adjust, legend_position_y, legend_new_panel,
legend_resize, style, style_col. See Section 4.4.1 for explanations of some common changes.

There are also some IDL variables which users do not need to be modified such as multi, ikon, iqq
(see descriptions in Table 2).

The ‘batch’ files are general purpose scripts, which have to run as shell scripts (see Section 4.2.2).
In the IDL script, these files start with’@’ sign. In the IDL script ‘post-TFB-figure-Sept2006.pro’,
the ‘batch’ files are listed as follows:

@setting_up.pro (for setting up)
@zz_1x1.pro (plot V:H = 1:1 scale)
@e2_s.pro (plot strain rate)
@mask.pro (mask the area outside model plot)
@veloc.pro (plot the velocity vectors, the style, size can be edited in veloc.pro)
@matcol.pro (plot the mechanical material coloring)
@lgrid_l.pro (plot the Lagrangian grids)
@finish_plot.pro (plot the think lines for the top and bottom of models, plot S point for

Microfem models)
@legend.pro (plot legends of Strain rate fill or Mechanical material fill colors)
@scale.pro (plot the scale bar, style of scale bar can be edited in scale.pro)

;***
; FILE NAME: post-TFB-figure-Sept2006.pro
; MODIFIED BY: MAI NGUYEN
; DATE: Sept. 19, 2006
; USER WILL BE ASKED TO ENTER THE OPTION OF PLOTTING AT THE IDL PROMPT:
; OPTION 'l': PLOT LAGRANGIAN GRID AND MATERIAL COLORING
; OPTION 's': PLOT STRAIN RATE AND VELOCITY

; Procedures:
; STEP 1: SELECT THE FRAMES FOR PLOTTING (frames)
; STEP 2a & 2b: SELECT THE WINDOW TO PLOT (horizontal_interval and yrang)
; STEP 3: SPECIFY THE COLOR OR GRAYSCALE FOR MATERIAL COLORING (material_colors)
; STEP 4: SPECIFY COLOR OR GRAYSCALE FOR STRAIN RATE COLORING (str_rates_col)
; STEP 5a: SELECT PAPER SIZE (plot)
; 5b: SPECIFY NUMBER OF PANELS PER PAGE (plot_n)
; 5c: SPECIFY THE SIZE OF PLOT ON PAPER (USE OPTION FROM STEP 5a)
; STEP 6: PLOT OPTION "s" - Strain rates and velocities

; NOTES: - all text after ';' are comments, will not be read by the program
; - comment the unused option by putting ';' at the beginning of the text.

;***

 18

;**************************************
; THE FOLLOWING DIALOG WILL APPEAR ON USER'S SCREEN AFTER TYPING ".run post-TFB-
figure-Sept2006.pro":
;**************************************
print,'Which postprocessing routine do you want to perform?'
print,' "l" - for Lagrangian grid/mat.coloring,'
print,' "s" - for strain-rates/velocities,'
read, ookk ; (ookk: data type = string; ookk is a general variable for reading
user input; ookk is ‘l’ or ‘s’)

;***************************************
; STEP 1: SELECT FRAMES TO BE PLOTTED, FRAME 1 IS LISTED AS 0; THE NUMBERING OF
FRAMES IS BASED ON THE LIST OR OUPUT FILES STORED IN USER’ DATA DIRECTORY, NOT
THE FRAME NUMBER OF THE SOPALE OUTPUT FILE. For example: There are four model
ouput files in User’s Data directory: g01_p00_f01_o, g02_p00_f01_o,
g01_p00_f04_o, g02_p00_f04_o. Specify: frames=[0] to plot g01_p00_f01_o or
g02_p00_f01_o and frames=[1] to plot g01_p00_f04_o or g02_p00_f04_o
;***************************************
;frames=indgen(nt1) ;*** PLOTS ALL MODEL OUTPUT FRAMES IN USER’S DATA DIRECTORY
;frames=[1,2,4] ;*** PLOT SELECTED FRAMES
frames=[8] ;*** PLOT ONE FRAME

;**
; STEP 2a: SELECT THE WINDOW TO PLOT BY EDITING 'horizontal_interval'; If
frames=[1,2,4] and horizontal_intervals=[0.,100.,100.,200.], IDL will plot two
set of diagrams, the first set of plots (frames 0, 1 and 3) from 0 to 100km and
the second set of plots (frames 0, 1 and 3) from 100 to 200km.
;**
horizontal_intervals=[0.,200.] ;*** (PLOT THE WINDOW FROM 0 TO 200 KM)
;horizontal_intervals=[0.,100.,100.,200.] ;*** (PLOT 2 windows: 0-100km, 100-
200km)

;***
; STEP 2b: PLOT WILL BE 1:1 SCALE, EDIT yrang WILL NOT CHANGE THE 1:1 SCALE
; NEED TO MODIFY yrang WHEN USER CHANGES THE PLOT WINDOW OR THE MODEL DEPTH
; THE SECOND VALUE IN yrang IS THE DISTANCE FROM THE TOP OF THE y-AXIS TO THE
; TOP OF THE MODEL PLOT
;***
yrang=[-0.5,10.] ; 10.=The distance from the top of the y-axis to the top of the
model plot (in km)

;**
; STEP 3: SPECIFY MECHANICAL MATERIAL COLORING, COLORS OF MATERIALS ARE
; SPECIFIED IN THE SCRIPT ‘color_set_up.pro’
; YOU NEED TO LIST ALL MATERIALS IN THE INPUT FILES EVEN IF SOME MATERIALS
; ARE NOT USED. THE VALUE gray(70) MEANS GRAYSCALE=70%
;***
material_colors=[1,2,magenta,Material4,Material5,pale_green,Material7,red,sedime
nt1,sediment3,sediment4,sediment5,sediment5B] ; Materials 1 and 2 are listed in
the model inputs but are not used for any mechanical materials boxes.

;***
; STEP 4: SPECIFY STRAIN RATE COLORING
;***
str_rates_col=col_scale ; col_scale=indgen(30)+1 (specify in default.pro)
;str_rates_col=[gray(0),gray(10),gray(20),gray(50),gray(60),gray(80)]

 19

;**
; STEP 5a: SELECT PAPER SIZE AND NUMBER OF PANELS PER PAGE
; NOTE: ONLY NEED TO DO STEP 5c FOR THE PAPER SIZE ‘small_land’

;xaxis_style or yaxis_style: (1: box type; 5: suppress axis; 9: x&y axis only)
;Notes: 1=Force exact axis range, box type; 2=Extend axis range; 4=Suppress
;entire axis; 8=Suppress box style axis (draw only one axis); 16=Inhibit setting
;the Y axis starting value to 0 (Y axis only).
;**
;plot='big_port' ;*** 11x17 paper, portrait
;plot='big_land' ;*** 11x17 paper, landscape
plot='small_land' ;*** 8x11 paper, landscape
;plot='small_port' ;*** 8x11 paper, portrait

xaxis_style=1 & yaxis_style=1 ;(1: box type; 5: suppress axis; 9: x&y axis only)

;***
; STEP 5b: SPECIFY THE NUMBER OF PLOTS PER PAGE BY EDITING PARAMETER 'plot_n'
;**
plot_n=4 ;*** PLOTS 4 PANELS ON ONE PAGE

;**
; STEP 5c: SPECIFY THE SIZE OF PLOT ON 8X11 (LANDSCAPE) BY EDITING xpr and ypr
;**
landscape='y' ; orientation of plot = landscape
 xpr = 26. & ypr = 17.0 ;*** size of the plot in cm

 multi=[0,1,plot_n,0,1]
 ikon=n_elements(frames)

;**
; STEP 5c: SPECIFY THE SIZE OF PLOT ON 11x17 (PORTRAIT) BY EDITING xpr & ypr
;**
if ikon gt 4 and plot eq 'big_port' then begin
 landscape='big'
 multi=[0,1,plot_n,0,1]

 xpr = 26. & ypr = 41. ;*** size of paper for print (in cm)

endif

;**
; STEP 5c: SPECIFY THE SIZE OF PLOT ON 11x17 (LANDSCAPE) BY EDITING xpr & ypr
;**
if plot eq 'big_land' then begin
 landscape='y'
 multi=[0,1,plot_n,0,1]

 xpr = 41. & ypr = 26 ;*** size of paper for print (in cm)

endif

;**
; STEP 5c: SPECIFY THE SIZE OF PLOT ON 8x11 (PORTRAIT) BY EDITING xpr and ypr
;**
if plot eq 'small_port' then begin
 landscape=''
 multi=[0,1,(ikon)*plot_n,0,1]

 20

 xpr = 20. & ypr = 25 ;*** size of paper for print (in cm)

endif
;******************

another=n_elements(horizontal_intervals)/2
if another gt 1 then if (horizontal_intervals(1)-horizontal_intervals(0)) ne
(horizontal_intervals(3)-horizontal_intervals(2)) then print,'HORIZONTAL SCALES
SHOULD BE EQUAL!!!'

xrang=horizontal_intervals(0:1)

@setting_up
;one2one_adjust='bottom' ;
one2one_adjust='top' ;
@zz_1x1 ;*** PLOT 1:1 SCALE

;**
;STEP 6: PLOT OPTION "s" (Strain rates and velocities)
;**

;**
;STEP 6a: SELECT LEGEND SIZE AND POSITION FOR "s" PLOT BY EDITING
"legend_position_y, legend_resize"
;**
legend_position_y=0.5 ;*** 0 : no legend;
 ;*** >0 : separate panel

legend_new_panel='yes'
legend_resize=1 ;*** 1 is normal size
yaxis='z, km' ;*** LABEL OF Y AXIS

aa=strpos(ookk,'s')
if aa ne -1 then begin
 for iqq=0,ikon*another-1 do begin
 i2=frames(iqq mod ikon)
 xrang=horizontal_intervals(0:1)
 if iqq gt ikon-1 then xrang=horizontal_intervals(2:3)
 if iqq eq ikon then !p.multi(0)=0

 ttt=model(0)+', step '+strtrim(string(convst(0,i2),format='(i5)'),2)+' ('
+strtrim(i2,2)+'), time '+strtrim(string(timee(0,i2),format='(f5.1)'),2)+' My,
!4D!3x='+strtrim(round(conve(0,i2)),2) ; *** title of plot
 xaxis=''

 ;**
 ; LABEL OF X-AXIS CAN BE CHANGED BY EDING PARAMETER "xaxis"
 ;**
 if !p.multi(0) eq 1 or iqq eq ikon then xaxis='x, km (S=0)'

plot,[0,1],[0,1],xrange=xrang,yrange=yrang,xst=xaxis_style,yst=yaxis_style,title
=ttt,/nodata,xtitle=xaxis,ytitle=yaxis

 ;**
 ;STEP 6b: USERS SELECT FIELDS TO PLOT FOR OPTION "s"
 ;NOTES: "@mask" and "@finish_plot" SHOULD NOT BE COMMENTED OUT.

 21

 ;**
 style='fill'
 col=str_rates_col
 @e2_s ;*** strain rate coloring
 @mask

 style='contour_line' ;*** solid lines
 @veloc ;*** velocities
 @finish_plot

 endfor
 @legend

endif

;**
;STEP 7: PLOT OPTION "l" (Material color, lagrangian grid)
;**
aa=strpos(ookk,'l')
if aa ne -1 then begin
 !p.multi=multi

 ;**
 ;STEP 7a: SELECT LEGEND SIZE AND POSITION FOR OPTION "l" PLOT BY EDITING
"legend_position_y, legend_resize"
 ;**
 legend_position_y=0.5 ;*** 0 : no legend;
 ;*** >0 : separate panel

 legend_new_panel='yes'

 for iqq=0,ikon*another-1 do begin
 i2=frames(iqq mod ikon)
 xrang=horizontal_intervals(0:1)
 if iqq gt ikon-1 then xrang=horizontal_intervals(2:3)
 if iqq eq ikon then !p.multi(0)=0

 ttt=model(0)+', step '+strtrim(string(convst(0,i2),format='(i5)'),2)+' ('
+strtrim(i2,2)+'), time '+strtrim(string(timee(0,i2),format='(f5.1)'),2)+' My,
!4D!3x='+strtrim(round(conve(0,i2)),2) ; *** title of plot
 xaxis=''

 ;**
 ; LABEL OF X-AXIS CAN BE CHANGED BY EDING PARAMETER "xaxis"
 ;**
 if !p.multi(0) eq 1 or iqq eq ikon then xaxis='x, km (S=0)'

plot,[0,1],[0,1],xrange=xrang,yrange=yrang,xst=xaxis_style,yst=yaxis_style,title
=ttt,/nodata,xtitle=xaxis,ytitle=yaxis

 ;**
 ;STEP 7b: SELECT FIELDS TO PLOT FOR OPTION "l"
 ;NOTES: OPTIONS "@mask" and "@finish_plot" SHOULD NOT BE COMMENTED OUT.
 ;**
 style='fill'
 style_col=1 ;*** Eulerian colors
 ;style_col=20 ;*** Lagrangian colors

 22

 @matcol ;*** material coloring
 @mask

 ;**
 ; OPTIONS FOR PLOTTING LAGRANGIAN GRID (@lgrid_l)
 ; SELECT OPTIONS FOR "lgrid_stepx, lgrid_stepy, thick_line_freq"
 ; CHOOSE DENSER GRID FOR ZOOM IN IMAGE, LESS DENSE GRID FOR WIDER PLOTS
 ; thick_line_freq=0: NO THICK LINES AND NUMBERING OF LAGRANGIAN GRIDS
 ;**
 style='contour_line' ;*** solid lines
 lgrid_stepx=3 ;*** PLOT EVERY 3 HORIZONTAL GRID LINES
 lgrid_stepy=6 ;*** PLOT EVERY 3 VERTICAL GRID LINES
 thick_line_freq=20
 thick_line_numbers='yes' ; to plot the number of vertical lines
 @lgrid_l

 @finish_plot

 endfor
 @legend
 @scale

endif
;**
@print
end

4.4.5 Other Examples of Plotting Tasks

4.4.5.1 Injected Lagrangian Particle Plots

The related IDL scripts are stored in the directory /castor_home_0/mai/IDL_scripts/IDL_Lag-
injected-disk-style-1to28/injected-Lag-disk-scripts/.
Parameters:
style='fill' or 'contour'
style_col=1: Eulerian coloring
style_col=20, 22, 23, 24, 27, 28: Lagrangian coloring
materials_to_color: materials for coloring
radius: radius of particles

Files which can be modified by users:
onfig_discs_test*.pro (or post*.pro)
mat_box.pro
phase_transition_patch.pro (specify the materials after the phase change)

Files which should NOT be modified by users:
matcol.pro
lagr_box.pro
lagr_limits.pro
injected_read.pro

phase_transition_patch.pro

 23

; **
; File: phase_transition_patch.pro
; List the material numbers that do not appear in the initial set-up, but expected to appear during the
; run. Then run this patch after reading the data, but before drawing programmes

add_boxes=[13,14,15,16,17,19,20,21] ; add boxes for the materials after the phase change
add_length=n_elements(add_boxes);
mec_boxes_add=fltarr(mec_boxes_no+add_length,8)
mec_colors_add=fltarr(mec_boxes_no+add_length)

mec_boxes_add(0:mec_boxes_no-1,*)=mec_boxes;
mec_colors_add(0:mec_boxes_no-1)=mec_colors;

i_add=0;
for ib=0,add_length-1 do begin
aaa=where(mec_colors eq add_boxes(ib),count);
if count eq 0 then begin
mec_boxes_add(mec_boxes_no+i_add,*)=mec_boxes(mec_boxes_no-1,*)*0;
mec_colors_add(mec_boxes_no+i_add)=add_boxes(ib);
i_add=i_add+1;
endif
endfor

mec_boxes_no=mec_boxes_no+i_add-1;
mec_boxes=mec_boxes_add(0:mec_boxes_no-1,*);
mec_colors=mec_colors_add(0:mec_boxes_no-1);
end
; ***

Users’ common modifications for plotting Lagrangian particles

xrang=[1550,1650] ; width of model windows
yrang=[-20.,670.]
landscape=''
xpr = 17. & ypr = 24 ; size of paper for print (in cm)
plots=1 ; number of panels to plot on one page
multi=[0,1,plots,0,1]

i2=1<stope(0) ; Select frames to plot
material_colors=[white,gray(10),gray(30),sea_green,brown,pale_yellow,pink,pink,lavender,
pale_green,gray(70),gray(90)] ; color or greyscale scheme for material coloring
style='fill'
style_col=24 ; Eul.=1; Lag. coloring: 20, 21, 22, 23, 24, 27, 28
radius=1 ; radius of disks
@matcol ; plotting material coloring
@finish_plot

 24

IDL postprocessing steps:
1. Change directory to the data directory
2. transfer model outputs from p690 to your data directory
3. Change directory to the IDL post-processing directory
4. review readme_injected-Lag-disks.pro
5. modify session.pro
6. modify scripts ‘onfig*.pro’ or ‘post*.pro’
7. type ‘idl session’ and press enter

IDL> .rnew read (read the output data)
IDL> .run phase_transition_patch (if you want to plot the materials after phase change)
IDL> .run onfig*.pro (run the IDL plotting scripts)
Save and/or Print postscript files

Figure 9 Lagrangian coloring of mechanical materials
of a Microfem model (HT1). (Source: Jamieson et al.,
2006)

4.4.5.2 Temperature contour (or fill) Plots

 25

Figure 10 Temperature field
was plotted as fill coloring.

4.4.5.3 Topography and Erosion Plots

Figure 11a Evolution of the topography of a
Microfem model HT1.
Source: Beaumont et al. (2004).

Figure 11b A diagram shows
the strain rate (plotted as fill
coloring), temperature contours,
viscosity contours and the surface
erosion plot. Source: Jamieson et
al., HKT meeting, 2006.

4.4.5.4 Animations

The animations of model results can be created by various options (Figures 12 and 13).
- The simplest way is to post process the model results using the IDL scripts and obtain GIF

animation files. Users can set the numbers of frames per second, the dimension of
animation windows, numbers of panels and types of plots. The GIF animation files have the
screen resolution.

- High resolution movies (*.mov) can be created from merging jpeg files in QuickTime.
Users run IDL scripts to obtain a set of postscript files and then manipulate these postscript
files on the personal computers using softwares such as Adobe Photoshop, CorelPhotoPaint,
QuickTime, GIF Constructions, etc.

Figure 12 Frame 1 of a thin-skinned thrust-and-fold belts model animation. The first panel shows
the Lagrangian grids and mechanical material coloring. The second panel shows the strain rate as
fill coloring, and the strain rate legend.

 26

Some common modifications from users are as follows:

Modify anim*.pro (model width and height, output frames, strain rate or
material colors, density of Lagrangian grids, velocity, etc.)

xrang=[0,200]
yrang=[0.5,11.]
frames=indgen((nt1)<stope(0)) ; plots all saved frames
plots=3 ; Number of panels to plot
material_colors=[1,2,magenta,red,sediment1,sediment3,sediment4,sediment
5,sediment5B
@anim_panel_grid&mat ; select the type of panel
@anim_panel_e2

IDL postprocessing steps:

1. Run model asking for matlab outputs and more output frames
2. Modify anim*.pro (model width and height, output frames, strain rate or material colors,

density of Lagrangian grids, velocity, etc.)
3. Run the IDL plotting scripts

IDL> .rnew read
IDL> .run anim*.pro
Specify name of postscript (*.ps) or animation *.GIF files and save

4. Transfer postscript files or GIF animation files to the personal computers. Figure 12 shows
various options of merging the animation files.

IDL post-processing

a set of postscript files

Adobe Photoshop

Figure 13 Creating animation files from model results using IDL, QuickTime, GIF Construction.

animation *GIF jpeg files

slide animation
in ppt

QuickTime

*MOV *AVI

GIF Construction

Corel Photo-Paint

*MOV in *AVI *GIF *MOV in
in ppt in ppt QuickTime PDF

 27

• IDL post-processing => to obtain the animation *.GIF. Users can run the IDL scripts to
obtain the GIF animation files, which can be inserted to PowerPoint file for presenting.This
is the simplest way but the GIF animation files have only the screen resolution .

• IDL post-processing => to obtain postscript files => jpeg files => insert jpeg files into
Power Point and set animation slide show using menu Slide Show

• IDL post-processing => to obtain postscript files => jpeg files => create movie files (*mov,
*avi) in QuickTime Pro => show animation in QuickTime or Adobe Acrobat PDF

• IDL post-processing => to obtain postscript files => jpeg files => create movie files (*GIF)
using GIF Construction Set (Animation Wizard available) or Corel Photo-Paint => insert
animation GIF files into PowerPoint

The following information is not directly related to IDL post-processing but it will assist you in
making the animations and inserting the movies to your presentations using various softwares.

a) Transform postscript to jpeg format using Adobe Photoshop
Step 1: Recording the Action:
• Window > Show Actions >

o Right click on the arrow at the top right corner to select New
Action.

 Name the New Action and Set.
 Type the directories for input directory (postscript files),

output directory (store jpeg files)
o Start Recording: From that point on you are in "record" mode and

whatever you do is recorded as a set of actions.
 File > Open: Open the first postscript file
 Rasterize Generic EPS (select resolution: 150 dpi; Mode: RGB)
 Image > Rotate Canvas (Rotate the image 90 degree to get the

correct orientation)
 Layer > Flatten Image
 Crop
 File > Save As: Save (save as jpeg: Format Option > Base Line

(standard); Quality=10 (Maximum))
 Close

Stop the recording.

Step 2: Transform all postscript files in a folder to jpeg format by using Batch Menu:

 File > Automate > Batch menu and you see a window where you have to set
the input directory, the ouput directory and the action to be applied to
all files in the directory.

 Play >
 Set (Select the Set that you recorded earlier)
 Action (Select the Action that you recorded earlier)
 Source (Folder where the postscript files are stored)

 check the boxes "Override Action Open commands" and "Override action
save in commands" so that you do not need to confirm opening each
image.

 Click OK (All actions recorded will be performed for every
postscript files stored in the “Source” folder. The jpeg files will
be saved in the output directory, which you specify during the
Action recording.

 28

b) Create Quick Time movies (*.mov) from *.jpeg in QuickTime Pro
Put all the jpeg files in a folder.
Each file should have the same name followed by a number; for example,
"picture1," "picture2."

 In QuickTime Player, choose File > Open Image Sequence, Browse and then
select the first jpeg file.

 In the Image Sequence Settings pop-up menu, choose a frame rate.
 QuickTime Pro creates the movie, which shows each picture in sequence.
 Choose File > Save to name and save the movie.

c) Adding movies (*.mov) to a PDF file in Adobe Acrobat

 Choose Tool > Advance Editing > Movie Tool
 Double-click on the page (in the pdf file) where you want to insert the
upper left edge of the animation.

 Add Movie dialog box > Browse to select the movie clip
 Add Movie > Movie Properties => select

 new content’s compatibility => Select Acrobat 6 Compatible Media for
all movie options; Select Acrobat 5 for readers without Acrobat 6

 Embed Content in Document => the PDf file include the movie (not the
link only)

 Snap to Content Proportions => the movie remains proportional
 Retrieve Poster from Movie => the first frame as a still image when
the movie is not playing

 Playback (right click): select Show Player Control
 Appearance: Invisible rectangle
 Click OK

d) Adding movie (*GIF, *AVI) to a PowerPoint file

 Open the PowerPoint file
 GIF Animation: Insert > Picture > From file (Browse to select the
animation GIF file)

 AVI animation: Insert > Movie > Movie from File (Browse to select the
animation *.avi file)

e) PowerPoint slide show as animation

 Insert > Picture > From file: insert postscript or jpeg files into the
PowerPoint presentation

 Format > Picture > Slide Position: All diagrams should have the same
position

 Slide Show > Slide Transition:
 Advance slide: Automatically after (select the desire interval time)
 Modify transition

 Slide Show > Animation Schemes
 Slide Show > Custom Animation

5 DESCRIPTIONS OF IDL_M-S VARIABLES AND SCRIPTS
5.1 Parameters and Variables
Table 2a shows the parameters and variables of some IDL scripts.
Bonny Lee also summarizes the variable names, data type of variables and their description in Table
2b. The variable names in bold are ones which contain the data read in from the SOPALE output.
The variable names in blue are ones which the user might modify for plotting. Variables are listed
in alphabetical order.

 29

Table 2a Summary of IDL_M-S variable descriptions (prepared by Bonny Lee, 2006).

variable
name

data
type

IDL routine description

aa string array read_s_lagr.pro,

read_s_eul.pro
list of files (including full pathname)
In read_s_lagr.pro, aa contains the list of Lagrangian
output files in the user's chosen data directory
In read_s_eul.pro, aa contains the list of Eulerian output
files in the user's chosen data directory

aa_m string array read_dialog.pro list of full pathnames for idl/info files
aa_m_z string array read_dialog.pro list of full pathnames for idl/info.gz files
aa_s string array read_dialog.pro list of full pathnames for SOPALE1_i files
aa_s_z string array read_dialog.pro list of full pathnames for SOPALE1_i.gz files
another integer "first level"

routines
number of horizontal windows per frame to be plotted
(e.g. if "another" = 2, then each frame will be plotted in 2
panels, one for x=horizontal_interval[0] to
horizontal_interval[1], the second for
x=horizontal_interval[2] to horizontal_interval[3])

bbco integer
array

lagr_limits.pro,
lgrid_l.pro,
matcol.pro,
radcolor.pro,
read_s_depth.pro
zebra.pro

array listing the indices of the points (either Lagrangian
or Eulerian) which fall within the plotting window

bblue byte array color_set_up.pro Blue values for RGB colour table (see rred and ggreen)
bound_con
d

integer
array

read.pro type of boundary condition

c_m integer read_dialog.pro number of idl/info files found in directory
c_m_z integer read_dialog.pro number of idl/info.gz files found in directory
c_s integer read_dialog.pro number of SOPALE1_i files found in directory
c_s_z integer read_dialog.pro number of SOPALE1_i.gz files found in directory
cell_size integer

array
set in
bc_analysis.pro,
used in
lagr_box.pro,
lagr_limits.pro,
lgrid_l.pro,
zebra.pro

cell_size[0] = max width (x) of all Eulerian cells in this
frame
cell_size[1] = max height (y) of all Eulerian cells in this
frame

code string array read.pro type of model ("Microfem" or "Sopale")
col_scale integer

array
default.pro array containing integers 1 - 10; used for indexing into

colormap?
coord double

array
read_s_lagr.pro Equivalent to x2 and y2 (records 1 and 2) of SOPALE

Lagrangian output file. Contains coordinates of nodes in
Lagrangian grid for all frames to be processed; units
used are kilometres, NOT metres!
coord(n,0,framenum) is value of x coordinate for
Lagrangian node n, frame=framenum
coord(n,1,framenum) is value of y coordinate for
Lagrangian node n, frame=framenum

 30

conv double
array

read_p_data.pro Convergence (in km) of Lagrangian grid
conv(ik,it) is convergence for frame number it (ik will
usually be 0)

convst_1 long
integer
array

read_s_info.pro,
read_s_eul.pro

Array of timestep numbers for saved Eulerian output
(corresponds to array isave_1 in file SOPALE1_i)

convst_2 long
integer
array

read_s_info.pro,
read_s_eul.pro

Array of timestep numbers for saved Lagrangian output
(corresponds to array isave_2 in file SOPALE1_i)

convtt double
array

read_s_eul.pro Timestep numbers of Lagrangian output files
convtt(ik,it) is value for output set ik (usually ik will be 0)
and frame number it

data_direct
ories

common read.pro,
session.pro

common data area

data_dirs string array read.pro list of full pathnames for data directories; last entry is the
name of the 'description file'

descriptionf
ile

string read.pro last entry in string array pref; name or location of
description file

discribe string array read.pro
exx double

array
read_s_eul.pro Equivalent to e_fx1 (record 14) in SOPALE Eulerian

output file.
Contains horizontal strain rate at Eulerian nodes for all
frames to be processed.
inv2(j,i,frame) is value for node at column j, row i, frame
= index of frame

exy double
array

read_s_eul.pro Equivalent to e_fy1 (record 15) in SOPALE Eulerian
output file.
Contains shear strain rate at Eulerian nodes for all
frames to be processed.
inv2(j,i,frame) is value for node at column j, row i, frame
= index of frame

ezz double
array

contour_mech.pr
o

field of values to be contoured

frames integer
array

"first level"
routines, e.g.
post_LHO-LS.pro

Contains a list of frame numbers to be plotted. For
Sergei's original scripts, the numbering of the frames is
based on the list of output files in the chosen data
directory: 0 is the first file in the list, 1 is the second file
in the list, and so on. This may be totally unrelated to the
"frame number" in the name of the Sopale output file.
Later scripts by Sergei may have added a feature that
allowed the user to specify the frame numbers to be
consistent with the Sopale output filename.

ggreen byte array color_set_up.pro Green values for RGB colour table (see rred and bblue)
gray integer

array
color_set_up.pro Array of indices into the RGB color table (see rred,

ggreen, bblue).
Given a gray level, say 70%, gray(70) would give an
index n such that the RGB triplet
[rred(n),ggreen(n),bblue(n)] would give a 70% gray
level.

hint string read_dialog.pro general variable for reading user input (?)

 31

horizontal_i
ntervals

real array "first level"
routines, e.g.
post_LHO-LS.pro

Defines x coordinates for plot windows; coordinates are
taken in pairs, i.e. first window begins at
x=horizontal_intervals[0] and ends at
x=horizontal_intervals[1], second window begins at
x=horizontal_intervals[2] and ends at
x=horizontal_intervals[3], etc.

i2 integer "first level"
routines, e.g.
post_LHO-LS.pro

 frame number (used as index to array frames)

ik integer read.pro index of model that is being processed (initialized to 0 at
beginning of read.pro) - but it doesn't look like scripts
are set up to loop over ik...

ikon integer "first level"
routines, e.g.
post_LHO-LS.pro

number of elements in array frames (i.e. number of
frames to be plotted)

inv2 double
array

read_s_eul.pro Equivalent to f1_sr (record 13) in SOPALE Eulerian
output file.
Contains second invariant of strain rate at Eulerian
nodes for all frames to be processed.
inv2(j,i,frame) is value for node at column j, row i, frame
= index of frame

inv2_sig double
array

read_s_eul.pro Equivalent to f1_sd (record 11) in SOPALE Eulerian
output file.
Contains second invariant of deviatoric stress (J2D) at
Eulerian nodes for all frames to be processed.
inv2_sig(j,i,frame) is value for node at column j, row i,
frame = index of frame

iqq integer "first level"
routines, e.g.
post_LHO-
LS.pro;
lgrid_l.pro

loop counter; indexes the current plot

isolables real setting_up.pro size of labels on isolines
ke integer read.pro Number of nodes in horizontal dimension of Eulerian

grid
kl integer read.pro Number of nodes in horizontal dimension of Lagrangian

grid
kx integer read.pro not sure, but is set to same as ke to start with (i.e.

number of nodes in horizontal dimension of Eulerian
grid)

kz integer read.pro Number of nodes in vertical dimension of Eulerian grid
kzl integer read.pro Number of nodes in vertical dimension of Lagrangian

grid
kzt integer read.pro Number of nodes in vertical dimension of Eulerian

temperature grid
landscape string "first level"

routines, e.g.
post_LHO-LS.pro

"yes" if the plot is to be in landscape mode

 32

legend_ne
w_panel

string "first level"
routines, e.g.
post_LHO-LS.pro

"yes" ; to plot legend as a separate panel

legend_pos
ition_x

 "first level"
routines, e.g.
post_LHO-LS.pro

legend_pos
ition_y

 "first level"
routines, e.g.
post_LHO-LS.pro

 0 - no legend
>0 - separate panel (need to use
legend_new_panel='yes')
<0 append to the bottom panel

legend_resi
ze

integer "first level"
routines, e.g.
post_LHO-LS.pro

1 is normal size

lgrid_stepx integer "first level"
routines, e.g.
post_LHO-
LS.pro;
lgrid_l.pro

grid spacing when plotting vertical grid lines (i.e.
lgrid_stepx = 10 would plot every 10th vertical gridline)

lgrid_stepy integer "first level"
routines, e.g.
post_LHO-
LS.pro;
lgrid_l.pro

grid spacing when plotting horizontal grid lines (i.e.
lgrid_stepy = 10 would plot every 10th horizontal
gridline)

llii string read_dialog.pro
ltd double

array
read_s_lagr.pro Lagrangian temperature (in degrees Celsius) and depth

(in km)
ltd(n,0,framenum) is temperature for Lagrangian node n,
frame=framenum, EXCEPT where the Lagrangian
particle has left the Eulerian grid. In this case, the value
of ltd(n,0,framenum) is the number of the last Eulerian
cell that the particle occupied before it was lost. [ltd(n,0,
framenum) is equivalent to t2 (record 9) of SOPALE
Lagrangian output file, except for units used.]
ltd(n,1,framenum) is depth for Lagrangian node n,
frame=framenum, EXCEPT where the Lagrangian
particle has left the Eulerian grid. In this case, the value
of ltd(n,1,framenum) is either -1 or its depth minus 1,
which ever is the most negative.

lveloc double
array

read_s_lagr.pro Equivalent to vx2 and vy2 (records 3 and 4) of SOPALE
Lagrangian output file. Contains x and y components of
velocities for nodes in Lagrangian grid for all frames to
be processed; units used are cm/yr, NOT m/s.
lveloc(n,0,framenum) is value of x component of velocity
for Lagrangian node n, frame=framenum
lveloc(n,1,framenum) is value of y component of velocity
for Lagrangian node n, frame=framenum

 33

mat integer
array

read_s_eul.pro Equivalent to color1 (record 16) in SOPALE Eulerian
output file.
Contains mechanical materials of Eulerian elements for
all frames to be processed.
mat(j,i,frame) is mechanical material number for element
at column j, row i, frame = index of frame

mat_lagr integer
array

read_s_lagr.pro Equivalent to color2 (record 5) in SOPALE Lagrangian
output file.
Contains mechanical materials of Lagrangian nodes for
all frames to be processed.
mat_lagr(n,frame) is mechanical material number for
node n, frame = index of frame

mat_t integer
array

read_s_eul.pro Equivalent to color1t (record 17) in SOPALE Eulerian
output file.
Contains thermal materials of Eulerian elements for all
frames to be processed.
mat_t(j,i,frame) is thermal material number for element
at column j, row i, frame = index of frame

material_co
lors

integer "first level"
routines, e.g.
post_LHO-LS.pro

array defining plot colours for materials.
material_colors[i] gives the colour number to use for
material (i+1) [since IDL indexes its arrays starting at 0].
The colour number is an index into the colour table
defined in color_set_up.pro. There are some predefined
values, so you can set up your colours like this:
material_colors=[red, green, blue, brown]

mec_boxes real array set in
read_m_mech_b
ox.pro and
read_s_box.pro,
used in
matcol.pro

Coordinates in km for the four corners of the mechanical
material boxes
 mec_boxes[n,0] = x1 mec_boxes[n,1] = y1
 mec_boxes[n,2] = x2 mec_boxes[n,3] = y2
 mec_boxes[n,4] = x3 mec_boxes[n,5] = y3
 mec_boxes[n,6] = x4 mec_boxes[n,7] = y4
where n is the number of the mechanical material box.
Sergei says it's "adjusted to S point"

mec_boxes
_no

integer set in
read_m_mech_b
ox.pro and
read_s_box.pro,
used in
matcol.pro

Number of mechanical material boxes, as defined in
SOPALE1_i

mec_colors integer
array

set in
read_m_mech_b
ox.pro and
read_s_box.pro,
used in
matcol.pro

Colours to use for plotting the mechanical material
boxes
mec_colors[i] = colour number to use for mechanical
box i

model string array read.pro name of model
mu double

array
read_s_eul.pro Equivalent to vy1r (record 5) in SOPALE Eulerian output

file.
Contains Eulerian nodal viscosities for all frames to be
processed.
mu(j,i,frame) is value of viscosity of node for column j,
row i, frame = index of frame

 34

multi integer
array

"first level"
routines

stores values for setting system variable !P.MULTI
!P.MULTI0] is number of plots remaining on the page
!P.MULTI[1] is number of plot columns per page
!P.MULTI[2] is number of rows of plots per page
!P.MULTI[3] is number of plots stacked in the Z
dimension
!P.MULTI[4] is 0 to make plots from left to right (column
major), and top to bottom, and is 1 to make plots from
top to bottom, left to right (row major).

ncolor22 integer matcol.pro,
matbox.pro,
lagr_box.pro

Number of regions to color

nhe integer
array

read.pro horizontal dimension for Eulerian grid (nodes in X)

nhl integer
array

read.pro horizontal dimension for Lagrangian grid (nodes in X)

nst integer conv.pro,
read_s_info.pro

number of timesteps for microfem output; also the
number of frames of Eulerian output saved in Sopale
(equivalent to nsave1 in SOPALE1_i)

nst_lagr integer read_s_info.pro number of frames of Lagrangian output saved in Sopale
(equivalent to nsave2 in SOPALE1_i)

nt integer read.pro total number of frames to process
ntt integer read.pro total number of frames to process
nt1 integer read.pro total number of frames to process
number integer read_s_eul.pro Frame number of Eulerian output file (used within a loop

in read_s_eul.pro)
nve integer

array
read.pro vertical dimension for Eulerian grid (nodes in Y)

nvl integer
array

read.pro horizontal dimension for Lagrangian grid (nodes in Y)

nvt integer
array

read.pro vertical dimension for Eulerian temperature grid (nodes
in Y)[Microfem only]

nxe integer conv.pro horizontal dimension for Eulerian grid (nodes in X) for
microfem output

nye integer conv.pro vertical dimension for Eulerian grid (nodes in Y) for
microfem output

nxl integer conv.pro horizontal dimension forLagrangian grid (nodes in X) for
microfem output

nyl integer conv.pro vertical dimension for Lagrangian grid (nodes in Y) for
microfem output

nyt integer conv.pro vertical dimension for thermal grid (nodes in Y) for
microfem output

ookk string general variable for reading user input
p double

array
read_s_eul.pro Equivalent to nodpres (record 6) in SOPALE output file.

Contains Eulerian nodal solid pressure for all frames to
be processed.
p(j,i,frame) is value of solid pressure for node at column
j, row i, frame = index of frame

path string array read.pro full path of directory which contains data to be
processed

plot string "first level"
routines, e.g.
post_LHO-LS.pro

Defines paper size and orientation for plot:
'big_port' for 11 x 17 paper, portrait
'big_land' for 11x17 paper, landscape
'small_land' for 8x11 paper, landscape
'small_port' for 8x11 paper, portrait

 35

plot_n integer "first level"
routines, e.g.
post_LHO-LS.pro

number of plot panels per page

pr string setting_up.pro,
print.pro

'y' = print plot
'e' = save plot as EPS
's' = save plot as Postscript
'v' = view plot in GhostView
'c' = colour print
'l' = print on 11x17 paper
't' = print on transparency

predif integer read.pro number of elements in pref (list of pathnames to search
for data), minus 2

pref string array read.pro same as data_dirs (list of directories to search for data
files)

processed string read_dialog.pro 'y' if model(ik) has been selected for processing ?
reference string array read.pro
rred byte array color_set_up.pro Red values for RGB colour table (see ggreen and bblue)
ryad long

integer
read.pro total number of nodes in Lagrangian grid

spoint double
array

read.pro position of S-point

stop integer
array

read.pro number of frames of saved topography data

stope integer
array

read.pro number of frames of Eulerian field data

strain_e double
array

read_s_eul.pro Equivalent to strain1 (record 18) in SOPALE Eulerian
output file.
Contains second invariant of total strain for Eulerian
elements for all frames to be processed.
strain_e(j,i,frame) is value for element at column j, row i,
frame = index of frame

strain_l double
array

read_s_lagr.pro Equivalent to strain2 (record 7) of SOPALE Lagrangian
output file. Contains second invariant of total strain for
nodes in Lagrangian grid for all frames to be processed.
strain_l(n,0,framenum) is value for Lagrangian node n,
frame=framenum

str_rates_c
ol

integer
array

"first level"
routines, e.g.
post_LHO-LS.pro

array defining plot colours for strain rate plot.
str_rates_col[i] gives the colour number to use for the
range specified by level[i] ? in e2.pro ?
The colour number is an index into the colour table
defined in color_set_up.pro.

string_bc string array read.pro string contained parameters of b.c.
style string contour_mech.pr

o, "first level"
routines, e.g.
post_LHO-LS.pro

defines style of plotting fields as contours
"fill" means plot filled contours
"true_fill" means plot filled contours using a cell-fill
algorithm (is slower than the other algorithm but works
better for contours which are not closed)
"contour_dot" means plot contours, using dotted line
"contour_line" means plot contours, using solid line

 36

style_col integer lagr_box.pro,
"first level"
routines, e.g.
post_LHO-LS.pro

defines style of plotting material colours [these are
Sergei's notes]
0 - set manual horizontal levels for material boundaries;
this is not much used now
1 - plot Eulerian coloring; i.e. color each Eulerian cell
according to its mechanical material value
20 - plot Lagrangian material boxes based on initial
model setup; this method needs the Lagrangian material
boxes from the initial model setup and maps those
boundaries to the current location of the corresponding
Lagrangian particles. Note that this method requires a
file containing the initial Lagrangian configuration, and it
does not work very well for high deformations.
21 -like style_col 20, but includes only points that are
definitely inside the Lagrangian box
22 - like style_col 21 with the addition of one more
element around the outside
23 - disk coloring of Lagrangian particles: plot a filled
circle at the position of each Lagrangian particle where
the color of the circle is based on the material value.
24 - disk coloring using initial Lagrangian boxes; plot
Lagrangian points within each Lagrangian box as filled
circles.

te double
array

read_p_data.pro Contains coordinates of surface nodes (top row) of
Eulerian grid; units used are kilometres, NOT metres!
te(model,j,0,frame) is X coordinate for surface node at
column j, frame = index of frame, model=index of model
[usually 0]
te(model,j,1,frame) is Y coordinate for surface node at
column j, frame = index of frame, model=index of model
[usually 0]
te(model,j,2,frame) is Y coordinate for bottom node at
column j, frame=index of frame, model=index of model
[usually 0]

tex double
array

read_s_eul.pro,
read_p_data.pro

Equivalent to x1 and y1 (records 1 and 2) in SOPALE
Eulerian output file.
Contains coordinates of nodes in Eulerian grid for all
frames to be processed; units used are kilometres, NOT
metres!
tex(j,i,0,frame) is X coordinate value for node at column
j, row i, frame = index of frame
tex(j,i,1,frame) is Y coordinate value for node at column
j, row i, frame = index of frame

temp double
array

read_s_eul.pro Equivalent to t1 (record 9) in SOPALE Eulerian output
file.
Contains Eulerian nodal temperatures for all frames to
be processed.
temp(j,i,frame) is value of temperature for node at
column j, row i, frame = index of frame

timet double
array

read_s_eul.pro Time (in My) for Sopale output files
timet(ik,it) is value for output set ik (usually ik will be 0)
and frame number it

total integer read.pro total number of data sets or models (hardwired to 1 at
beginning of read.pro)

 37

tv double
array

read_s_eul.pro Equivalent to vx1 and vy1 (records 3 and 4) in SOPALE
Eulerian output file.
Contains Eulerian velocities for all frames to be
processed; units used are cm/yr, NOT m/s.
tv(j,i,xy,frame) is value of velocity component for node at
column j, row i, xy=0 for X component, xy=1 for Y
component, frame = index of frame

type string array read.pro
uu integer generic file unit number
vconv double

array
read.pro convergent velocity

vert_margin real array setting_up.pro values for setting system variable !Y.MARGIN
!Y.MARGIN[0] is bottom margin, in units of character
size
!Y.MARGIN[1] is top margin, in units of character size

xpr real "first level"
routines, e.g.
post_LHO-LS.pro

width of paper in cm

xrang real array "first level"
routines, e.g.
post_LHO-LS.pro

Defines x coordinates (i.e. min x, max x) for current plot
window

xss real setting_up.pro ratio of width/height for the plot device
yaxis string "first level"

routines, e.g.
post_LHO-LS.pro

label for y axis ?

ypr real "first level"
routines, e.g.
post_LHO-LS.pro

length of paper in cm

yrang real array "first level"
routines, e.g.
post_LHO-LS.pro

Defines y coordinates (i.e. min y, max y) for current plot
window.
Comment from script:
THE FIRST VALUE IN yrang IS THE DEPTH FROM
MODEL SURFACE TO THE BOTTOM X-AXIS
; THE SECOND VALUE IN yrang IS THE DISTANCE
FROM THE TOP X-AXIS TO THE SURFACE OFTHE
MODEL

 38

Table 2a List of variables of some IDL scripts.
The numbering of the IDL scripts is based on Table 1.

**
10) arr.pro (subroutine,ms,2%, 4)
Parameters used from veloc.pro:
 (xb,yb) - coordinates
 (vx,vy) - vector
 vvv - vector-scale
 xss - x/y ratio of the plot (calculated automatically)

19) conv.pro (programme,m,10%, 2)
- INFO: eulerian grid (nxe,nye)
- INFO: thermal grid (nyt) and time steps (nst)
- INFO: lagrangian grid (nxl,nyl) and topo-time (ntt)

25) finish_plot.pro (include,ms,10%, 4)
Parameter in default.pro:
otline_thickness: thickness of outter line
radi: radius of circle on S-point

28) lagr_box.pro (include,ms,10%, 2 and 4)
mat_box(ncolor22,8),
lagr_color(ncolor22),
erotime, style_col (20, 21, or 22)
 - to set before call address to subroutine: @lagr_box

29) lagr_limits.pro (include,ms,10%, 2)
bbco - #s of lagrangian points,
l_x, l_y - coords

45) read_m_erosion.pro (include,m, 10%, 2)
 erostyle - integer:
 =1 (eros prop to topo)
 =2 (eros prop to uplift vel)
 =3 (erosion prop to slope)
 ero - integer: amount of history events
 erostages - arrey(ero): time boundaries between events
 erovvalues - arrey(ero): value of erosion coefficient on the event boundaries
 erospaces - integer: amount of erosion provinces
 erospace - arrey(erospaces): boundaries between provinces in km (S=0)
 erovvalues - arrey(erospaces): value of erosion weight on the province boundaries

46) read_m_file.pro (include,m,2%, 2)
 hint - name of file
 path(ik) - directory of data, ended with ../idl

49) read_m_mech_box.pro (include,m,10%, 2)
- Boxes (mec_boxes) are defined as in input files:
 [x1,y1,x2,y2,...] - anticlockwise (does not really matter here, which direction)
- Outputs: mec_boxes_no - number of mechanical boxes
 mec_colors(mec_boxes_no) - number of color to each box
 mec_boxes(mec_boxes_no,8) - coordinates of boxes in km, adjusted to S-point
**
50) read_m_therm_box.pro (include,m,10%, 2)
- Boxes (ther_boxes) are defined as in input files:
 [x1,y1,x2,y2,...] - anticlockwise (does not really matter here, which direction)

 39

- Outputs: ther_boxes_no - number of thermal boxes
 ther_colors(ther_boxes_no) - number of color to each box
 ther_boxes(ther_boxes_no,8) - coordinates of boxes in km, adjusted to S-point
**
58) read_s_mech_box.pro (include,s,10%, 2)
- Boxes (mec_boxes) are defined as in input files:
 [x1,y1,x2,y2,...] - anticlockwise (does not really matter here, which direction)
- Outputs: mec_boxes_no - number of mechanical boxes
 mec_colors(mec_boxes_no) - number of color to each box
 mec_boxes(mec_boxes_no,8) - coordinates of boxes in km, adjusted to S-point

"read_sopal"

total=1
path=strarr(total)
model=path
type=model

discribe=strarr(total)
reference=strarr(total)

nhe=intarr(total) ; horizontal dim for eul
nve=intarr(total) ; vertical -"-
nvt=intarr(total) ; vertical dim for eul T
nhl=intarr(total) ; horizontal dim for lagr
nvl=intarr(total) ; vertical -"-
stope=intarr(total) ; saved field data
stop=intarr(total) ; saved topography data
spoint=dblarr(total) ; position of S-pont
vconv=dblarr(total) ; converggent velocity
bound_cond=intarr(total) ; type of b.c. (1 - for Microfem)
code=strarr(total) ; type of code ('microfem' or 'sopale')

ke=max(nhe)
kl=max(nhl)
nt=count_eul; max(stop)+1
ntt=count_eul; max(stop)+1
kx=ke
kz=max(nve)
kzt=max(nvt)
kzl=max(nvl)
nt1=count_eul; max(stope)+1

conv=fltarr(total,nt)
timet=fltarr(total,nt)
convtt=lonarr(total,nt)
conve=fltarr(total,nt1)
timee=fltarr(total,nt1)
convst=lonarr(total,nt1)

;Topography
te=fltarr(total,ke,4,nt)
tl=fltarr(total,kl,4,nt)

;Velocity
tv=fltarr(kx,kzt,2,nt1)
tex=fltarr(kx,kzt,2,nt1)

 40

mu=fltarr(kx,kz,nt1)
Inv2=fltarr(kx,kz,nt1)
exx=fltarr(kx,kz,nt1)
exy=fltarr(kx,kz,nt1)
mat=intarr(kx,kz,nt1)
temp=fltarr(kx,kzt,nt1) ; only if tcompute eq 1

ryad=long(kl)*kzl
coord=fltarr(ryad,2,nt1+1)
ltd=fltarr(ryad,2,nt1+1)+5 ; just to make that >0, values <0 assigne for eroded
;mat_lagr=fltarr(ryad,2)

;erostyle - integer:
; =1 (eros prop to topo)
; =2 (eros prop to uplift vel)
; =3 (erosion prop to slope)
;ero - integer: amount of history events
;erostages - arrey(ero): time boundaries between events
;erovvalues - arrey(ero): value of erosion coefficient
; on the event boundaries
;erospaces - integer: amount of erosion provinces
;erospace - arrey(erospaces): boundaries between provinces in km (S=0)
;erovvalues - arrey(erospaces): value of erosion weight
; on the province boundaries

 mec_boxes_no - number of mechanical boxes
; mec_colors(mec_boxes_no) - number of color to each box
; mec_boxes(mec_boxes_no,8) - coordinates of boxes in km,
; adjusted to S-point

 ther_boxes_no - number of therhanical boxes
; ther_colors(ther_boxes_no) - number of color to each box
; ther_boxes(ther_boxes_no,8) - coordinates of boxes in km,
; adjusted to S-point

mt=intarr(kx,kzt,nt1)
radio=fltarr(fix(aa)+1)

Parameters:

upp_slab=fix(nve(0)-1)

printall
print
landascape

Plotting parameters:
xaxis_style=1 - for plotting axis (default)
 =5 - to suppress axis

Notes: Sergei Medvedev described the IDL scripts as the following notation (Tables 1 and 2a):
'm': routines for Microfem models
's': routines for Sopale models
'program': programs (end with "end" operator); use .run to run in IDL environment
'include': included files in programs or included in other 'include files' or in 'Batch file'.
'subroutine': Functions can be called by Main Level and Second Level programs

 41

'batch': General purpose program has to be run as shell script (@default.pro, etc.)
'%': Sergei estimated the percentage of chance that the files will be modified by users.
 Files categorized as more than 50% will likely need to be modified by Users to suit the specific
purpose.
'data': field data for comparing to model results or other data.

5.2 Description of IDL_M-S Scripts (written by Sergei Medvedev, 2002)

The text in this section was taken from Sergei’s notes (with few minor typo corrections) at the
beginning of the IDL scripts; however, not all files have explanations. These scripts should be
stored in the IDL_M-S Software Directory (see Fig. 5a). The programs are listed in an alphabet
order in this section. A summary of their classification is presented in Table 1.

1) anim_bc.pro (include,s,80%, 1)
To illustrate boundary condition (bc) on the animation.
Notes:
- Subroutine to animate bc. This very much depends on type of bc. Check this routine, and
bc_analysis.pro and SOPALE User guide if you want to improve/apply this subroutine.
- In version of 31 Aug, 2002, only bc#12 (no isostasy, no S-point) for Sopale implemented (see top
panel on http://adder.ocean.dal.ca/sergei/thrmal/RBRTP-17_web_fast.gif : moving bottom strip,
moving arrows at the base, backstop, material moves out in the left-vbottom corner)

2) anim_clos_gif.pro (include,ms,30%, 1)
Subroutine that wraps up the animation: save each frame, converts it to GIF, merges all frames into
GIF animation, removes all intermediate files, and places it in proper place after permission
changed to see it world-wide.
Notes:
- The purpose of this subroutine is to read from the screen, save the screen in graphic format, close
the frames loop and then compile frames into animation file.
- We implemented here gif-animation. The procedure is simple: read screen (tvrd()), save frames in
separate gif files and then merge them into gif animation file. The procedure is simple if the version
of IDL in use has GIF license.

- The version presented here oriented on the "IDL without GIF license" (e.g.: firedrake and viper).
So, a complicated gif conversion is performed using another computer, which has GIF license(e.g.:
adder):
 * we read screen in IDL internal format,
 * save it remotely on another computer which has GIF license (adder),
 * save color map there (we need it for GIF files),
 * create procedure (batch file) to run this particular animation on another computer (adder),
 * and then run the compilation of the animation from the remote computer (adder)
 See details of GIF animator on http://www.lcdf.org/gifsicle/
 * Clean extra files in anim_dir.
 * Please, make sure that compile_dir and anim_dir are separate directories, and should be visible
from adder, otherwise you have good chance to remove the resulting animated file.

3) anim_clos_mpg.pro (include,ms,?%, 1)

 42

No success with nice MPEG animation so far - if someone wants to continue, this file can substitute
the above in closing and saving animations. It successfully creates JPEG (24 byte color map), but
merged MPEG does not look nice and it is big

4) anim_panel_e2.pro (include,ms,20%, 2)
Panel included into animation.pro to plot contours of the second invariant of str-rates, format and
plot legend (see bottom panel in http://adder.ocean.dal.ca/sergei/thrmal/RBRTP-17_web_fast.gif)

5) anim_panel_grid&mat.pro (include,ms,40%, 1)
Panel included into animation.pro to plot contours of materials (matcol.pro) and lagrangian grid
(lgrid_l.pro), illustrate bc and time (anim_bc.pro and anim_time.pro)(see top panel in
http://adder.ocean.dal.ca/sergei/thrmal/RBRTP-17_web_fast.gif)

6) anim_panel_mat.pro (include,ms,40%, 1)
Panel included into animation.pro to plot contours of materials (matcol.pro), format and plot legend
(see middle panel in http://adder.ocean.dal.ca/sergei/thrmal/RBRTP-17_web_fast.gif)

7) anim_setup.pro (include,ms,20%, 3)
Sets up technical parameters and arrange environment for animation (font type, plotting window
etc.). Similar to setting_up.pro
Notes:
- setting the plot parameters, used also by print.pro (link to label "print:"
- Manipulating with colors, devices (window) etc.
- Frames loop started here and finished in anim_clos.pro

8) anim_time.pro (include,ms,20%, 4)
Colored time scale (see top panel on http://adder.ocean.dal.ca/sergei/thrmal/RBRTP-
17_web_fast.gif)
Notes:
- This subroutine is build on the basis of scale.pro and legend.pro
- Simply coloring the time past

9) animation.pro (program,ms,100%, 1)
Most of the parameters and steps of animation are set here. Many parameters explicitly specified
here: program calls anim_setup.pro, anim_panel_* (examples of several panels are presented here,
more can be created using examples as templates), anim_clos_gif.pro.
Notes:
- Main Level Program animation for Sopale and Microfem
- It is set up by anim_setup.pro and wrapped by anim_clos.pro.
- Panels are plotted by subroutines anim_panel_*.pro.
- Several supporting subroutines with name started with anim_* (see list).
- See anim_clos.pro for details of output procedures.
- Output directory (anim_dir) is specified in this program.
- Important parameter: size of the window (bigger size results in bigger animation size)
- Parameters of animation run (in 1/100 sec):
 time to hold initial picture, time per frame,
 time to hold the last picture

 43

10) arr.pro (subroutine,ms,2%, 4)
Subroutine to plot vector fields
Notes:
Parameters used from veloc.pro:
 (xb,yb) - coordinates
 (vx,vy) - vector
 vvv - vector-scale
 xss - x/y ratio of the plot (calculated automatically)

11) bc_analysis.pro (include,ms,20%, 2)
Extracts (not read) bc data from Sopale1_i, analyses boundary velocities (to define
valoc_scale_global - characteristic velocity; and specifies centers of restricted areas where boundary
velocity changes rapidly), specify characteristic cell-sizes. Called from read.pro and asia.pro (the
letter to redefine characteristic scale for velocity). Boundary conditions are not entirely analyzed
yet.
Notes:
- Subroutine to analyze bc of the model (called from program read.pro).
 The type of bc is already known to that point (bound_cond):
 Microfem is always 1,
 Sopale has several different options.
- This subroutine is still under construction and has to (at some point) recognize most of the
boundary data and how this data can affect plotting. Some functions are already implemented here:
- This subroutine extracts parameters of bc for Sopale and counts their number.
 If you know the order of the bc parameters and know their meaning - you already can use them.
See example in anim_bc.pro (bc #12 is used there).
- Be aware that bc parameters are not converted to conventional like all other data (cm/y, My, km,
etc.).
 It assign global scale for velocity: max along the boundary at init time or (if previous is 0) by
total max of velocity. Later, in veloc plots you can chose between global scale (assigned here) and
local scale.
 It also searches for points of 0 velocity along the boundaries that has non-zero neighbors and
assigns these points as restricted.
 It also calculates characteristic size of a cell: to bound the restricted areas and to set limits for
line removal in lagrangian grid plots.
- Program procedures:
 Extracting b.c. from Sopale data
 Analyzing specific b.c. (examples) for Sopale main target here- to understand how we should
evaluate convergence in the system
 Setting lagr cell size - to use in lagr grids and in restricted areas - to remove very long lines
 Setting characteristic velocity : velo_scale_global (note that velocity, tv, is already in cm/y)
 Analyze bc for discontinuity, create restricted areas

12) chris_pictures.dat (data,ms,0%, 5)
Picture of "Chris on top of his favorite orogens". Should be read by program chris_read.pro

13) chris_read.pro (include(batch),ms,0%, 2)
To read picture of Chris

 44

14) cig.pro (program,*,0%, 5)
Plots how many cigarettes Sergei smokes (y axis) against time (x axis).

15) circle.pro (subroutine,ms,2%, 2)
Creates 50-points circle

16) color_present.pro (program,*,0%, 4)
Presents colors that defined by this package and can be used in color and black&white plotting.

17) color_set_up.pro (include(batch),ms,40%, 3)
Subroutine to set up the color map of the plots. Colors can be added (see details inside file)
Notes:
- This subroutine is called by "setting_up" before each plot is created.
- After the subroutine applied, you can refer to color by just giving its number.
 For convenience, several color numbers are assigned to color names ("yellow", "red" etc.;).
 The last 101 elements of colormap set the grayscale, you can refer to them by gray(n), where n is
desired percentage of gray.
- The palette can be viewed/printed using program color_present.pro
- This routine also changes background color: from black for screen to white in PS.
- You can switch parameter color between 'b/w' and "color" (in subroutine "default.pro").
 That will only affect named colors, but not change the palette.
 For example, if color='color' "yellow" will be yellow, but if color='b/w', "yellow” will be gray
with 25% (if we set yellow=gray(25)).
- User can interpret any color to grayscale by your own in the second part of the subroutine.
- User can modify colormap by adding more colors (up to 154) to the end of explicit expression for
RGB values (rred,ggreen, bblue arrays). Do not change the 0th element and grayscale.

18) contour_mech.pro (include,ms,20%, 4)
Complicated subroutine to plot contours (line of filled) of mechanical fields
Notes:
- Contouring mechanical field (used in most of subroutines for filled/line contouring)
- This subroutine recognizes type of field (lagr, eul, elemental, nodal), reformat data, smooth,
prepare legend.
- Smoothing (Eulerian fields smooth only)

19) conv.pro (program,m,10%, 2)
Complicated program to convert standard output from Microfem into data readable by this software
package. Each Microfem run result should be converted once, the converted results are stored in the
subdirectory "idl" in User's Data Directory.
Files in this "idl" subdirectory can be recognized by program read.pro
Notes:
Program procedures:
- Directory search
- INFO: Eulerian grid (nxe,nye)
- INFO: thermal grid (nyt) and time steps (nst)
- INFO: Lagrangian grid (nxl,nyl) and topo-time (ntt)
- Initializing the arrays
- Reading temperature fields

 45

- Reading Eulerian arrays
- Reading Lagrangian arrays
- Reading Lagrangian topography
- Eulerian topography
- Obtaining additional information: evolution arrays
- Obtaining additional information: densities
- Obtaining additional information: viscosity limits
- Saving information
- Cleaning

20) default.pro (include(batch),ms,100%, 3)
Sets many parameters, technical and user-defined.
Notes:
- It calls automatically before the end of each program.
- If you change some parameters there, you have to run this file as a batch program
(IDL>@default.pro)

21) downloads.pro (include,ms,90%, 2)
Allow you to define which fields you want to download by program read.pro. Especially important
for large data sets and small computers.
Notes:
- If read_pro used to read Sopale data, you can chose what fields you want to download - make sure
that fields you don't want are commented out (;), and vise versa
- You don't need to worry about each field: it will be no error (with Sopale) if data is not saved, but
unmark - it will remain array of '0'
 Coordinates (tex and coord) and depth (ltd) should not be commented, though.
- Microfem data should be read entirely
- Lagrangian data: Note here, that lagrangian fields have one more time step assigned than eulerian.
This is because the initial position of eulerian grid is not important, while it is very important for
lagrangian.
*** Sergei assigns the first time step to both zero and first lagrangian coordinates.
If someone have an idea how to find very initial data for Lagrangian, feel free to implement, or to
discuss that with Segei M..

22) e2.pro (include,ms,70%. 1)
Plotting routine to contour (lines or fills) second invariant of str-rates and (if filled) prepare legend
parameters. Set ranges, labels, etc manually. There are some traditional default settings.
Notes:
- Contour labels (do not appear if filled contour is chosen)
- to contour_mech

23) egrid (include,ms,10%, 4)
Subroutine to plot Eulerian grid
Notes:
- The regularity of plotted grid defined by lgrid_stepx and lgrid_stepy -
- The same as in Lagrangian grid plotting by lgrid_l.pro

 46

24) erosion_front.pro (include,m,10%, 4)
 Program to plot distribution of erosion
 - automatically plots if there is erosion
 - set the color for plot: erosion_front_color for colored pictures
Procedures:
- Extracting the info from erosion-data
- Calculations of the erosion - distribution
- Plotting

25) exponent.pro (subroutine,ms,10%, 2)
 FUNCTION Exponent, number
To present nicely numbers (on the legend mainly) - just give the number
to that subroutine (like: 1.e21 -> 10(21), where number 21 will appear as superscript)

26) finish_plot.pro (include,ms,10%, 4)
Parameter in default.pro: otline_thickness - thickness of outer line
 - Program to finish plot:
 - outline domain and put S-point
Notes:
radi=1.2 ; radius of circle on S-point
Notes: The size of circle depends on number of plots on the page.

27) ground_0.pro (program,ms,10%, 2)
 Program to make the undeformed upper surface of model to be at y=0

28) inversion.pro (program,ms,10%, 2)
 Change sides of model domain (+ -> -)

29) lagr_box.pro (include,ms,10%, 2 and 4)
Subroutine to color lagrangian boxes
Notes:
- Boxes (mat_box) are defined as in input files:
- [x1,y1,x2,y2,...] - anticlockwise (does not really matter here, which direction)
- The function dist is calculated as the minimum distance to the boundary of box (at t=0), with
positive sign if lagrangian point is on the same side from boundary as central point of the box
(centx, centy - calculated as average of 4 corners of the box). Then positive area of dist is colored.
 Dist is smooth function across the boundary -> contour is smooth.
- Parameters: mat_box(ncolor22,8), lagr_color(ncolor22),
 erotime, style_col (20, 21, or 22) - to set before call address to subroutine: @lagr_box

30) lagr_limits.pro (include,ms,10%, 2)
Routine to search for lagrangian points inside and in vicinity of the plotting area and to exclude
"restricted" area points
Notes:
Result: bbco - #s of lagr. points, l_x, l_y - coords

31) legend.pro (include,ms,50%, 4)
- Parameters in default.pro:

 47

legend_back='no' - The size of legend is not known before legend is finished.
Setting this parameter to 'yes' will force subroutine do the following after legend is finished: cover
plotted legend by background color and change legend_back to 'no'. So that second application of
legend.pro will be plotted on the background - useful if main plot covers almost entire window and
there is no place to put legend outside (see examples on Ritske's animations).
The sequence in the program will be like that:
 legend_back='yes'
 @legend
 @legend
 The default 'no' assumes that you plot legend only once

legend_position_y=0. - Vertical position of the legend (~0 - along the bottom of the plot, 1 - at the
top; negative values and values >1 allowed on your own risk). Setting the value exactly to 0 force
not to plot legend

legend_position_x=0. - Horizontal position of the beginning of the legend (0 - left of the plot, 1 -
right side of the plot). There is no special meaning for value 0, likely in legend_position_y.

legend_resize=1. - you can rescale the legend (including text) proportionally using this parameter

vertical_rescale=1.5 - you can rescale vertical dimension of the legend boxes

legend_new_panel='no' - if 'yes' is set, the legend will be plotted on the new panel, if 'no' - the same
as main plot

legend_mantle_labels='no' - leave it to 'no' if you don't work with Microfem models.

velo_legend='no' - do not change this parameter

- Legend will be presented if legend_position_y not 0. Legend uses colored boxes assigned by the
last filling subroutine.
- Legend boxes and space between them can be resized using legend_resize (1 by default). It does
not affect font size.
- Legend will be plotted on the new panel, if legend_new_panel is 'yes', otherwise it will be plotted
using recent panel (you can assign negative value to legend_position_y and legend appears below
that recent panel.

32) lgrid_l.pro (include,ms,30%, 4)
This routine plots lagrangian grid. Optionally, it plot certain vertical grid lines thicker; it can also
put numbers at the ends of the thick lines. The main parameters of this routine should be specified
before call to this routine, or by using parameters in default.pro:

lgrid_stepx=10 - plot every 10th vertical lagrangian line
lgrid_stepy=10 - plot every 10th horizontal lagr. line
thick_line_freq=7 - set it to 0 to suppress thick lines; otherwise each 7th thin line will be thick (the
thickness of thick lines can be changed be editing lgrid_l.pro)
thick_line_numbers='yes' - set it to 'no' to suppress numbering the thick lines (it does not have an
effect if thick_line_freq=0)

 48

Name of the routine came from "lagrangian grid with limits". If two initially neighboring lagrangian
points went too far from each other during deformation, these points will not be connected. The
limits can be changed by editing this file.

33) mask.pro (include,ms,10%, 4)
Some of the plotting routine (especially contouring routines) make some noise outside of real plots
(due to irregularity of data). The mask.pro put background colored masks outside the targeted
plotting area.

34) mat_box (include,ms,50%, 1)
Tracing the lagrangian box, arbitrary set by User. This routine is similar to matcol.pro (with
style=2*), except it uses arbitrary set material boxes (not mechanical boxes from Sopale1_i)

35) matcol.pro (include,ms,50%, 1 and 4)
Subroutine to color or outline the materials.
The style_col and is defined now in "default.pro" or it can be defined in the calling plotting routine

style_col - style of coloring:
 0 - set manual horizontal levels for material boundaries
 (up to 3 colors allowed)
 1 - use Eulearian coloring
 2* - use Lagrangian boxes from input (does not work very good for high
deformations):
 20 - contouring distance to the boundaries
 21 - coloring from inside (all colored - definitely belong)
 22 - coloring from outside (all that belong - definitely colored)
material_colors=[blue,yellow,bottom_grey] - set colors for materials

The routine colors materials if style_col=0 or 1; it calls lagr_box.pro for 2*

36) onfig.pro (program,ms,100%, 1)
This program is similar to other post-processing programs, except it aims to plot only chosen time
steps.
It is also attempts to be flexible enough to meet needed demands for certain style and to present
certain information.
Notes:
- This program set the parameters of plots and calls for panel_*.pro (see, e.g., panel_template.pro).
- Instead of panel, you can use anim_panel_*.pro

37) panel_templ.pro (include,ms,100%, 1)
This program is a template and will be modified 100 percent by user. This should be a list of
plotting routines that can be combined on one post-processing panel.

38) print.pro (include,ms,10%, 3)
Printing subroutine for Sopale/Microfem/IDL post-processing
Notes:

 49

- This subroutine looks for parameters "pr" and "landscape" and label "print:" in the plotting
routines (standard "print:" label is hidden in "setting_up" subroutine)
 If printing is chosen, this subroutine sets-up PS devise and plots everything on the PS. Default files
to print are idl0.ps through idl4.ps - they are rotating to avoid interference that may caused by slow
print piping. You can choose your own name for postscript file using "s" (save) as main or second
symbol in your response - in this case title of the file will appear on the plot (you can change that -
go down 3-4 lines and check the line with "if ... 's'...")
- I would not recommend saving large sized (11x17) plots...
- This file has 100% chance to be edited by the system administer.

39) print_auto.pro (include,ms,10%, 3)
Check and arrange display:
 if printall not empty -> no display, direct to PS
 if printall is empty -> arrange display

40) PTt-ero (m)
This is directory including the following programs (for Microfem models). The routines of this
subdirectory heavily rely on extended metamorphic and erosion related data, which available only
for Microfem results.
data1
ero_distrib.pro
erosion.pro
erosion_front.pro
intersect.pro
lagr33.pro
lagr84.pro
meta_points.pro
meta_search.pro
metabox.pro
metamap.pro
post_metamap.pro
pttbox.pro
pttcolor.pro
pttsetup.pro
thermall.pro
timemarks.pro

41) radcolor.pro (include,ms,30%, 4)
Coloring of the materials according to their thermal type. It can be improved similar to matcol.pro if
there will be an interest. So far it was not used for Sopale.

42) read.pro (include,ms,10%, 1)
Important: this program should be activated using command rnew:
IDL>.rnew read

This program read the data from User's Data Directory (or Microfem subdirectory 'idl') to save it in
memory and use it for further plotting/calculations.

 50

At the moment the program recognizes three types of data: Microfem (postprocessed by conv.pro);
traditional output from Sopale; and "matlab" type of output from Sopale. The program
automatically recognizes the type of date and reads it accordingly. Overall, it has a good level of
automatism.

There is not much to change inside this compilation program. Two files can control read.pro:
session.pro - set directories to check for data
downloads.pro - set the parameters to read

43) read_description.pro (include,ms,2%, 2)
Reading file models (description file). This subroutine is rarely used because nobody has enough
time to put few notes about data.

44) read_dialog.pro (include,ms,2%, 2)
Subroutine to chose the data for following post-processing

45) read_init_restart.pro (include,s,10%, 2)
This subroutine tries to find initial (closest to initial) data for lagragian coordinates
Notes:
- It is called from "read_sopal_lagr.pro"

46) read_m_data.pro (include,m,10%, 2)
Reads Microfem data.

47) read_m_erosion.pro (include,m, 10%, 2)
Program to extract parameters of erosion
Parameters:
 erostyle - integer:
 =1 (erosion proportional to topography)
 =2 (erosion proportional to uplift velocity)
 =3 (erosion proportional to slope)
 ero - integer: amount of history events
 erostages - arrey(ero): time boundaries between events
 erovvalues - arrey(ero): value of erosion coefficient on the event boundaries
 erospaces - integer: amount of erosion provinces
 erospace - arrey(erospaces): boundaries between provinces in km (S=0)
 erovvalues - arrey(erospaces): value of erosion weight on the province boundaries

Notes:
- Program works automatically (zip-independent, protection-independent)
- run in readmai.pro

48) read_m_file.pro (include,m,2%, 2)
Subroutine to prepare file to read: too many files to read in microfem - sometime we decide to add
one to be downloaded
Parameters:
 hint - name of file
 path(ik) - directory of data, ended with ../idl

 51

49) read_m_finish.pro (include,m,10%, 2)
Conversion to convenient units.

50) read_m_info.pro (include,m,10%, 2)
Reads general information of Micrrofem data (e.g. number of saves, size of arrays etc.)

51) read_m_mech_box.pro (include,m,10%, 2)
Subroutine to read info about mechanical boxes
Notes:
- Boxes (mec_boxes) are defined as in input files:
 [x1,y1,x2,y2,...] - anticlockwise (does not really matter here, which direction)

- Outputs: mec_boxes_no - number of mechanical boxes
 mec_colors(mec_boxes_no) - number of color to each box
 mec_boxes(mec_boxes_no,8) - coordinates of boxes in km, adjusted to S-point
-these boxes trace only init lagr. position - no need to worry about them after inversion

52) read_m_therm_box.pro (include,m,10%, 2)
Subroutine to read info about therm boxes
Notes:
- Boxes (ther_boxes) are defined as in input files:
 [x1,y1,x2,y2,...] - anticlockwise (does not really matter here, which direction)
- Outputs: ther_boxes_no - number of thermal boxes
 ther_colors(ther_boxes_no) - number of color to each box
 ther_boxes(ther_boxes_no,8) - coordinates of boxes in km, adjusted to S-point
-these boxes trace only init lagr. position - no need to worry about them after inversion

53) read_m_therm_propr.pro (include,m,10%, 2)
Reads thermal properties of materials involved in Microfem models

54) read_p_data.pro (include,s,20%, 2)
Reads Sopale "matlab"-type of outputs

55) read_s_depth.pro (include,s,10%, 2)
Program for manual assignment of depth for lagrangian points. In contrast with Microfem data,
Sopale does not have depth of Lagrangian points as an output. The depth is roughly estimated here
for each Lagr. point for each step saved.

56) read_s_eul.pro (include,s,10%, 2)
Reading from g01_... - eulerian data

57) read_s_finish.pro (include,s,10%, 2)
Assigning additional parameters, conversion to convenient units

58) read_s_info.pro (include,s,25%, 2)
Extracting the info from SOPALE1_i

 52

59) read_s_lagr.pro (include,s,10%, 2)
Reading from g02_... - Lagrangian data

60) read_s_mech_box.pro (include,s,10%, 2)
Subroutine to read info about mechanical boxes from Sopale
Notes:
- Boxes (mec_boxes) are defined as in input files:
 [x1,y1,x2,y2,...] - anticlockwise (does not really matter here, which direction)
- Outputs: mec_boxes_no - number of mechanical boxes
 mec_colors(mec_boxes_no) - number of color to each box
 mec_boxes(mec_boxes_no,8) - coordinates of boxes in km, adjusted to S-point
-these boxes trace only init lagr. position - no need to worry about them after inversion

61) scale.pro (include,ms,80%, 4)
Subroutine to add scale to the bottom of the plot
Notes:
- This subroutine will work only if there is no horizontal axis on the last plot (xaxis_style=5)
- Two styles are implemented: 'line' and 'chess'.
 the last uncommented assignment to scale_type will work.
 If scale_type='line' there are two options: ticks='yes' or 'no':
 'yes': |____|____|____|

 'no': |______________|

- There is no automatic assignment to length of the scale and length between ticks/chess boxes, it's
up to user to define scale_length and scale_ticks, both in km.
- Scale length/height ratio is assigned to 20 in statement: scale_height=scale_length/20.
- you can change the ratio by replacing the numeric parameter

62) session.pro (include,ms,80%, 1 and 2)
Sets common data_directories; sets the paths for other parts of IDL_S-M; sets up color style. Please
make sure that all directories with data are included here before you start IDL.

63) setting_up.pro (include,ms,30%, 3)
Setting the plot parameters, used also by print.pro (link to label "print:")

64) smoothing.pro (function,ms,10%, 2)
FUNCTION smoothing - smooths 1 and 2 D arrays.

65) suture.pro (include,m,20%, 4)
Tracing Lagrangian points that initially bound India-Asia
Notes:
Chris suggested to changed program name to lcol.pro or lcolumn.pro)

66) Tcontour.pro (include,s,60%, 1)
Temperature contours. This routine calls contour_mech.pro to plot/contour temperature

67) total_strain_e.pro (include,s,60%, 1)

 53

Total strain contours based on eulerian data. This routine calls contour_mech.pro to plot/contour
temperature

68) total_strain_l.pro (include,s,60%, 1)
Total strain contours based on Lagrangian data. This routine calls contour_mech.pro to plot/contour
temperature

69) veloc.pro (include,s,60%, 1)
 Set-up of velocity vectors and Plotting velocities. By default it plots total velocity vectors
dynamically calculated in the program (see other veloc*.pro for other possibilities)

70) veloc_bc.pro (include,m,5%, 1)
 Plots velocity that would be result if gravity would be set to 0.

71) veloc_g.pro (include,m,5%, 1)
gravity velocity

72) veloc_mantle.pro (include,m,5%, 1)
plot velocity in crust and mantle (below Moho)

73) velocity_scale.pro (include,ms,25%, 4)
Plot velocity scale
Notes:
- If you want this style of scale - put it right before "legend", if you do opposite - "legend" will take
over
- This scale will appear only if you have velocity in your plot; no need to comment this subroutine if
you don't plot velocities.

- The same as in "legend", the legend_position defines the position of the scale; but setting
legend_position=0 does not suppress this feature (it suppress only "legend")
- You can use veloscale not equal 1 to present scale differently, e.g. when advancing subduction
makes it 2.5 cm/y convergence from both sides, there is no need to present scale for 5 cm/y (which
is total convergence rate): make veloscale=0.5 and you will get velocity scale for 2.5 cm

74) zebra.pro (include,ms,40%, 4)
Zebra-style lagrangian grid

75) zz_1x1.pro (include,ms,2%, 3)
Ono-to-one scaling. This routine recalculate vertical extend of plotting area to make one-to-one
plot; then it changes one of the predefined vertical limits (yrang) to match the desired vertical
extend.
 The vertical limit is decided by parameter in the default.pro:
one2one_adjust='bottom' - bottom limit is stay (e.g. in thin-skinned models, where bottom is always
0)
one2one_adjust='top' - top limit stay (e.g. in Microfem models, or in deep Sopale models after
ground_0.pro applied - you have good sense of what value for upper limit should be chosen)

 54

6 REFERENCES

Fanning, D.W., 2002, Coyote' s guide to IDL Programming, http://www.dfanning.com

Fanning, D.W., 1998, IDL Programming Techniques, Fanning Software Consulting, 325 pp.

http://www.ecdf.org/gifcisle
http://www.dfanning.com/
http://www.informatik.fh-mannheim.de/idl/onlguide.pdf.
http://www.informatik.fh-mannheim.de/idl/refguide.pdf
http://www.informatik.fh-mannheim.de/idl/quickref.pdf
http://geodynamics.oceanography.dal.ca/bonny/docs/idl_scripts/idlrefguide.pdf.

 55

http://www.ecdf.org/gifcisle
http://www.dfanning.com/
http://www.informatik.fh-mannheim.de/idl/onlguide.pdf
http://www.informatik.fh-mannheim.de/idl/refguide.pdf
http://www.informatik.fh-mannheim.de/idl/quickref.pdf
http://geodynamics.oceanography.dal.ca/bonny/docs/idl_scripts/idlrefguide.pdf

