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Summary: The links between an early phase of orogenesis, when orogens are commonly wedge shaped, and a later phase, with a
plateau geometry, are investigated using coupled thermal-mechanical models with uniform velocity subduction basal boundary
conditions, and simple frictional-plastic and viscous rheologies. Models in which rheological properties do not change with depth
or temperature are characterised by growth of back-to-back wedges above the subduction zone. Wedge taper is inversely
dependent on Rm (gravity stress/basal traction); increasing convergence velocity or crustal strength produces narrower and
thicker wedges. Models that are characterised by a decrease in crustal viscosity from ηc to ηb with depth or temperature, leading
to partial or full basal decoupling of the crust from the mantle, display more complex behaviour. For models with  moderate
viscosity ratio, ηb/ηc~ 10-1, the crustal wedges have dual tapers with a lower taper in the central region and a higher taper at the
edges of the deformed crust. A reduction in the viscosity ratio ( ηb/ηc ~ 10-2) is sufficient to cause a transition of the central
wedge region to a plateau. This transition depends on the basal traction, therefore, the thickness of the weak basal layer also
affects the transition. Further reduction of the viscosity ratio ( ηb/ηc ~ 10-4) leads to full basal decoupling and the development of
plateaus in all cases considered. In most models, the plateaus grow laterally at constant thickness between characteristic edge
peaks associated with the transitions from coupled to decoupled lower crust. Where the crust is fully decoupled, large-scale
model geometries for both depth- and temperature-dependent rheologies are similar with gravity-driven flow concentrated in the
low-viscosity region. However, strong lateral temperature gradients within these models, controlled by the interaction of
horizontal and vertical thermal advection, diffusion, and heterogeneous thickening of the radioactive crustal layer, lead to
differences in the velocity and deformation fields between the two cases, particularly at the plateau margins. The results suggest
that simple depth-dependent viscosity models may be reasonable approximations for describing the large-scale geometry of fully
developed plateaus, but that they are not appropriate for describing the internal features of large orogenic systems or the
transition from wedge to plateau geometry.

1. Introduction

Orogenic belts are zones of thickened continental crust that
form as a result of convergence between lithospheric plates.
The dynamic evolution of an orogen is controlled by the
thermal and mechanical evolution of the zone of thickened
crust and underlying mantle, and by interactions between
gravitational, compressional, and basal traction forces. Various
approaches have been used to investigate these factors. One-
and two-dimensional thermal-kinematic models (England and
Thompson, 1984; Henry et al., 1997; Huerta et al., 1998;
Thompson and Connolly, 1995) have revealed the effect of
radioactive heat production in thickened crust on the thermal
evolution of model orogens, and the importance of thermal
weakening on the integrated strength of the lithosphere (Sonder
et al., 1987). Models designed to understand the mechanics of
orogenic belts have included rheologies ranging from uniform-
plastic or frictional-plastic (Chapple, 1978; Dahlen et al., 1984;
Davis et al., 1983; Willett et al., 1993) to viscous (Bird, 1991;
Buck and Sokoutis, 1994; Ellis et al., 1995; England and
McKenzie, 1982; Houseman and England, 1986; Houseman et
al., 1981; Royden, 1996; Willett, 1999; Shen et al., 2001).
More recently, two-dimensional coupled thermal-mechanical
models have been used to investigate dynamic interactions
between heat and tectonics in orogenic systems (Batt and
Braun, 1997; Jamieson et al., 1998).

The purpose of this paper is to investigate the links
between early phases of orogenesis, when orogens commonly
have a wedge shaped cross-section geometry (for example,
Alps, Southern Alps (NZ), Pyrenees, and Taiwan), and a later
phase when plateaus may develop (for example, Tibet and the
Andes Altiplano). This problem has previously been
approached both in the context of distributed whole lithosphere
deformation (for example, England and McKenzie, 1982;
England and Houseman, 1986; Bird, 1989) and in the context
of underthrusting/ subduction of the mantle lithosphere
beneath crust that undergoes distributed deformation (for
example, Willett et al., 1993; Royden, 1996; Jamieson et al.,
1998; Shen et al., 2001). Here we focus on the subduction
model and show how mechanical and thermo-mechanical
evolution of the overlying crust can explain these two phases
of orogenesis. We also investigate which properties of the
evolving model orogen determine the characteristics of the two
phases and what determines the transition between them.
Specifically, we test whether prolonged thickening of the crust
during orogenesis followed by decoupling of the crust from the
mantle, as the temperature rises from accumulated radioactive
heating, can account for the transition from the wedge to
plateau phase. The results allow the predictions of models with
simple temperature- and depth- dependence of viscosity and
driven by mantle subduction to be compared and contrasted
with those based on distributed deformation of the whole
lithosphere.
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Section 2 describes the basic assumptions
incorporated into the model that we investigate. It outlines the
first-order force balance and the thermal controls on the two
end-members phases, wedge and plateau. In addition to
defining the problem this section provides framework for the
interpretation of the model results.

In Sections 3, 4 and 5 a coupled thermal-mechanical
model is used to investigate numerically the corresponding
evolution of orogenic crust subject to subduction of the
underlying mantle lithosphere. In keeping with the conceptual
model, the numerical model properties are purposely kept
simple in order to isolate the changing roles of the component
forces that control the crust as it thickens, and the temperature
and rheology evolve. In particular, a comparison is made
between models that have depth-dependent and thermally
dependent rheologies.

2. Description of the Physical Model

Plane-strain model orogens in which lithospheric convergence
is accommodated by crustal shortening and thickening and by
subduction of the underlying mantle lithosphere can be
described to first order using the concepts shown in Figs 1 and
2.  We outline two simple end-member cases: (1) the crust has
uniform linear-viscous properties with a strong base (Fig. 1a)
and; (2) the crust has a layered viscous rheology in which the
basal layer is weak (Fig. 1b). We interpret these cases to
correspond to two phases of orogenesis, the first, the “wedge”
phase, when the lower crust is cold and the second, the
“plateau” phase, when the lower crust becomes increasingly
hot as a result of crustal thickening.

Figure 1 Conceptual illustration of the physical basis of the model for wedge and plateau phases. In the subduction model deformation is
driven by convergence of pro-lithosphere at velocity Vp and by detachment and subduction of the pro-mantle lithosphere at point S. Retro-
mantle is stationary, Vr = 0. The forces derive from gravity, Fg, compression, Fc, and traction acting at the base of the crust, Ft. An estimate
of the horizontal force balance is given for the pro-side of the deformed crust. (a) Orogenesis of crust with uniform viscosity (ηc) leads to
the formation of back-to-back wedges. The Ramberg number, Rm, the ratio of characteristic gravity and shear stresses of the system,
controls the behaviour of the wedge phase of orogenesis. (b) Orogenesis of the crust with layered rheology may lead to formation of a
plateau when ηc >> ηb and Ftb �0. Basal traction force, Ft, is divided into two parts reflecting the changes at the base of crust due to
formation of the weak basal layer, Fc is neglected in simplified force balance, Fg is independent of viscosity and estimated as in (a). ρc =
density of crust,  ρm = density of mantle, Φ=(1- ρc/ρm) = isostatic amplification factor, ∆h= (hmax – h0) = maximum crustal thickening, ha=(
hmax + h0)/2 = average thickness of the crustal wedge. See Tables 1 and 2 for definitions and text for details.
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The first orogenic case is characterised by the growth
of back-to-back tectonic wedges above the subduction zone
(Fig. 1a, see caption for details). Following Medvedev (in
press) we analyse the horizontal balance of forces (forces per
unit length along strike) acting on the pro-wedge:

 Fg + Fc - Ft = 0 (1)

The influence of gravity, Fg, is estimated from the vertically
integrated lateral variation in lithostatic pressure and is non-
zero when the crustal thickness varies laterally. The basal
traction force, Ft, is the integral of the basal shear stress along
the base. The compressive force, Fc, is estimated by integrating
the horizontal normal stress over the crustal thickness. Note
that Fg and Fc have the same sign. Both oppose the basal
traction, which is the primary source of the crustal thickening.
The first-order estimates presented on Fig. 1a assume wedge
symmetry and, therefore, the balance for the retro-wedge is the
same.

The relative role of the compressional force decreases
as the wedge grows (Medvedev, in press). This is illustrated by
the ratio Fc/Ft ~ (hmax/λc)

2, which decreases because λc
increases more rapidly than hmax. Therefore, after some growth
the balance between basal traction and gravity (Ft ~ Fg ) is the
main control on the wedge evolution. Resolving this balance
for the ratio of the system thickening (∆h) to the horizontal
length scale (λc) gives the crude estimate of the wedge taper as

∆h/λc ~ ηcV/(Φρcgh2) (2)

Note that ∆h and λc are the characteristic length scales for Fg
and Ft and, therefore, the right side of the eq.(2) represents the
ratio of average stresses corresponding to these forces. This
ratio corresponds to the Ramberg number (Rm, Fig. 1a), the
main dimensionless parameter of the force balance in the
wedge, and shows, for example, that wedges characterised by
lower Rm are generally steeper (see Section 4.1 and
Medvedev, in press).

For the second orogenic case (Fig. 1b) the conceptual
model includes a hot, low viscosity layer, ηb, in the lower
crust. The simplest parameterisation assumes a critical depth,
z* (Fig. 1b), as a proxy for the transition from high to low
viscosity, but other formulations discussed later more correctly
consider a critical temperature, T*, or a depth or temperature
range over which the transition occurs. The forces are
estimated in the same manner as those for the first case. To
first order we again neglect Fc and the estimate of Fg remains
unchanged. Shear stresses from the basal traction, Ft, are
necessary to maintain lateral gradients in crustal thickness and
counteract the role of gravity, which tends to relax these
gradients. The total traction, Ft, comprises two parts, Ftc and
Ftb, which depend on the viscosity of the material in contact
with the underlying mantle lithosphere (Fig. 1b).

Three crustal geometries exist, depending primarily on
ηb/ηc. The first, the uniform viscous geometry, has ηc=ηb as
described above and predicts back to back wedges. If ηb
decreases somewhat Ftb can still support some wedge taper in

the central region of the thickened crust, while Ftc supports a
higher wedge taper at the edges of the deformed crust. This
leads to the second geometry, wedges each with dual tapers, an
external surface slope that is steeper than the internal one. In
the third geometry ηb, and Ftb, are too small to support any
significant taper or surface slope and the corresponding
geometry is a plateau flanked by wedges supported by Ftc (Fig.
1b).

In the third geometry the force balance eq.(1) further
simplifies to Fg - Ftc ~0. The rheological transition ηc→ηb
along the Moho limits the value of Ftc; which in turn limits Fg

and, therefore, determines the thickness of the resulting plateau
crust. Thus, once a plateau develops (Ftb<<Ftc), the plateau
crustal thickness is insensitive to the properties of the weak
basal layer (ηb and hb) and is determined mainly by the

Table 1. Definition of model parameters 
 

Variable Definition Standard value    
[Initial value] 

h Crustal thickness (Figs 1, 2) [ho = 35 km] 
hb Thickness of low-viscosity layer (Fig. 1b) [hbo = 0 km] 
∆h Maximum crustal thickening (Fig. 1) ∆h = max(h- ho) 
w Elevation of topography (Fig. A) [wo= 0 km] 

z Depth below surface - 
λc Width of deformed area (Fig. 1) - 
λb Width of low-viscosity layer (Fig. 1b) - 

   
g Acceleration due to gravity 9.81 m/s2 

t Time 0−75 My 
∆x Convergence (in km) ∆x = Vp⋅t 
ρc Density of crust 2700 kg/m3 

ρm Density of mantle 3300 kg/m3 

Φ Isostatic amplification factor (Fig. 1) 0.18 
ηc Viscosity of crust (Fig. 1) 1023 Pa⋅s 
ηb Viscosity of basal layer in crust (Fig. 1b) - 
z*,z1/z2 Depth (effective depth) of rheological transition 

(Figs 1b, 3, 17f) 
40 km 

φ Internal angle of friction 7.5° 
co Cohesion 106 Pa 
Vp Convergence velocity, pro-side (Figs 1, 2) 1 cm/yr 
D Flexural rigidity 1022 N⋅m 

   
T Temperature - 
Ttop Temperature at the top surface 0 °C 
TMoho Temperature at the Moho (Figs 2, 3, 17c) [TMoho = 644°C] 
∆T Difference in temperature between Moho and 

upper surface (Fig. 2) 
[∆To = 644°C] 

T*,T1/T2 Temperature(s) of rheological transition (Fig. 3) 700°C, 
400/700°C 

Cp Heat capacity (Fig. 2) 750 J/(kg⋅K) 
ρ Average density of the system (used in thermal 

model; Figs 2, 3) 
3000 kg/m3 

K Thermal conductivity (Fig. 2) 2.25 W/(m⋅K) 
κ Thermal diffusivity (Fig. 2) 10-6m2/s 
qs Surface heat flux (Fig. 3) [qso = 70 W/m2] 

qm Mantle heat flux (Fig. 3) 30 W/m2 

hr Thickness of radioactive layer (Figs 2, 3) [hro = 20 km] 
A1 Volumic rate of heat production in radioactive 

layer (Figs 2, 3) 
2×10-6W/m3 

A2 Volumic rate of heat production in the lower 
crust (Figs 3, 16) 

0 µW/m3 

   
Kp Plateau coefficient (Appendix A) - 
E Effective width of thickening (Appendix A) - 
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properties of the cold crust and parameters that limit value of
Ftc (e.g., z*).

The development of the weak lower crust can be
explained by the decrease in effective viscosity with increasing
temperature. The associated thermal evolution is controlled by
three fundamental processes - self-heating from the decay of
long-lived radioactive elements, advection, and conduction
(Fig. 2). During convergence a crustal layer, thickness hr, with
uniform radioactive heat production, A, thickens and heats
itself (Fig.2).

Thermal advection is proportional to the product of
the velocity and the temperature gradient in the direction of
motion. We distinguish both horizontal advection, owing to
convergence, and vertical advection, owing to vertical material
stretching. Horizontal advection is not important early in the
evolution when horizontal temperature gradients are small.
Crustal thickening causes material stretching and significant
vertical advection of heat (Fig. 2). In addition, the downward
component of motion of the subducting slab (velocity Vz, Fig.
2) also advects heat and this effect is strongest on the retro-side
of the system, resulting in some cooling of retro-mantle and
crust.

Conduction diffuses perturbations of the geothermal
gradient and, when vertically integrated, measures the transient
heating rate owing to changes in the net heat flux into or out of
a previously thermally stable layer. The estimate of the
conductive heating rate (Fig. 2) assumes that the change of the
net flux into the layer is equal to the steady state heat flux
through the layer (K∆T/h). It provides a measure of, for
example, the cooling rate of the crust after rapid advection of
subducting mantle lithosphere beneath the crust such that the
heat flux into the base of the crust decays to zero. Similarly, it
measures the heating rate of non-radioactive lower crust when
the upper crust is heated radioactively and tends to an
isothermal state.

Using the first-order scaling analysis (Fig. 2) and the
parameter values (Table 1), we estimate that in the models
considered here all three thermal components are significant,
especially during the initial stages of deformation, and
therefore none of them can be neglected. The thermal control
differs significantly between the wedge and plateau phases.
During crustal thickening the vertical material advection,
which at a given depth replaces hotter material with cooler
material, competes with self-heating and conduction from the
mantle and upper crust. Vertical advection is, however,
negligible in the plateau crust because the thickness remains

Figure 2: The thermal evolution of the model orogenic crust is
controlled by the interplay among crustal heating by radioactive
decay, heat advection associated with the displacement of rocks,
and conduction of heat that relaxes temperature gradients. Estimates
of the corresponding local heat fluxes (qr, qa, qc) can be integrated
to give approximate rates of heating (Q

•  

r, Q
•  

a, Q
•  

c) for a typical
vertical crustal column of height h, bounded by the model top
surface and the Moho at the bottom, with horizontal length scales Lx

and Ly (top panel) and across which temperature varies by ∆T. See
text for details. A = volumic rate of heat production of the
radioactive crust of thickness hr, ρ = average density of the system
for the thermal model, K = thermal conductivity, V* = average
vertical crustal velocity; Vz = vertical velocity at the top of retro-
slab (= Vp sin(α) at t~0). Other parameters and values are given in
Tables 1 and 2 and Fig. 1.

Table 2. Description of models

Models Comments, description Parameters
variations

Uniform rheology models (Figs 4,5,7,8)

FP(ξ) Frictional plastic rheology with
internal friction φ=ξ°

ξ=7.5–15

V(ξ) Uniform crrust with viscosity
η  =10ξ Pa⋅s

ξ=22−23

Isostatic compensation (Fig. 6):

noIso Prevent any vertical motion along
the base of crust

ρm is very high

Airy Local isostasy D is very low

Depth-dependent rheology of crust (Figs 3, 9–12):

V(γc/γb)z(z*) Viscosity decreases from  ηc =10γc

Pa⋅s to ηb =10γb Pa⋅s at depth z =
z* km

γc=23; γb=18−22;
z*=40−50

V(γc/γb)z(z1/z2) Viscosity linearly decreases from
ηc =10γc Pa⋅s to ηb =10γb Pa⋅s at in
the interval of depth z = [z1, z2] km

γc=23; γb=18−22;
z1=40;  z2=50

Temperature-dependent rheology of crust (Figs 3, 13–17):

V(γc/γb)T(T*) Viscosity decreases from  ηc =10γc

Pa⋅s to ηb =10γb Pa⋅s at
temperature T=T*  °C

γc=23; γb=18−22;
T*=700

V(γc/γb)T(T1/T2) Viscosity linearly decreases from
ηc =10γc Pa⋅s to ηb =10γb Pa⋅s at in
the interval of temperature
T=[T1, T2] °C

γc=23; γb=18−22;
T1=400;  T2=700
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almost constant (Vz ~ 0). Horizontal motion correspondingly
increases during the plateau phase and the radioactively
thickened crust is transported retro-ward, thereby increasing
the role of horizontal advection. Owing to the combined effects
of horizontal advection, conduction, and self-heating, the
hottest crust is located below the retro-plateau.

3. The Thermal-Mechanical Model

A fully thermally coupled, plane strain, incompressible
viscous-plastic model (Fig. 3) is used to investigate
deformation of a model domain subject to velocity boundary
conditions that correspond to subduction of the underlying
mantle lithosphere. The mechanical problem is restricted to the
calculation of the deformation of the model crust with basal
boundary velocity equal to Vp beneath the convergent (pro-)
crust and decreasing to Vp = 0 beneath the stationary (retro-)
crust. The velocity transition occurs at S, where the pro-mantle
detaches and subducts (Fig. 3a). The domain of the thermal
model includes the crust and underlying lithosphere. This is
necessary because the assumed subduction influences the
temperature in the overlying crust. A kinematic velocity field
corresponding to the mantle subduction (Fig. 3b) is used in the
solution of the advective-diffusive thermal problem in the sub-
crustal lithosphere, whereas the dynamical velocity field from
the solution of the mechanical problem is used in thermal
solution in the crust. The results presented focus on the fully
dynamical thermal-mechanical part of the solution for the
crust.

The crust has an upper free surface and most models
include flexural isostatic compensation of the thickened crust
calculated from the elastic flexure of a continuous uniform
beam, flexural rigidity, D (Table 1), embedded in the model at
the base of the crust. For the models discussed here the results
are not significantly different from those where a beam broken
at S is used (Jamieson et al., 2002). A range of crustal
rheologies is considered, including frictional plasticity, uniform
linear viscosity, depth-dependent linear viscosity, and
temperature-dependent viscosity, as defined in Fig. 3.

The boundary conditions for the thermal model are
constant temperature at the surface (0°C), constant basal heat
flux, qm = 30 mW/m2 (applied to the bottom boundary of the
subducting slab), and no heat flux along the lateral boundaries.
The initial temperature field is calculated assuming a steady
state for the initial geometry and Vp = 0. The results do not
depend strongly on whether the initial conditions assume no
precursor subduction or prolonged subduction with Vp = 1
cm/y (Vanderhaeghe et al., 1998). We therefore restrict the
models considered here to those with an initial conductive
equilibrium, which for the standard model parameters yields a
Moho temperature of 644 °C.The thermal model properties
include uniform radioactive heat production A1 in the upper
crust and, in a few models, heat production A2 in the lower
crust (Section 5.2). Other standard model parameter values are
given in Table 1.

The model evolution is calculated using an arbitrary
Lagrangian- Eulerian (ALE) method for the finite element
solution of thermal and incompressible viscous-plastic creeping
flows (Fullsack, 1995). Thermal and mechanical calculations

are based on the equations (Fig. 3) and are alternated so that
mechanical properties can be updated according to the current
temperature field. An advection/interpolation algorithm allows
the associated Lagrangian motion to be followed and the field
properties transferred to the evolving Eulerian finite element
grid. The results presented below use an Eulerian grid with

Frictional plastic:

production   diffusion      advection
Thermal formulation:

Viscous creep:

J2(σd) ≤ P·sinφ + co

σd = 2ηε

Mechanical formulation

Viscosity profile as a function of depth (z) or temperature (replace z by T):

for  z < z*: η = ηc= 10γc Pa.s
for  z > z*: η = ηb = 10γb Pa.s

for  z < z : η = ηc = 10γc Pa.s

2for  z  < z < z  : η = ηc + (ηb − ηc)
1

1
(z  - z)
(z  - z )2

1

1
for  z > z  : η = ηb = 10γb Pa.s2

1
2

Step-function model [V(γc/γb)z(z*)]: Linear decrease model  [V(γc/γb)z(z1/z2)]:

Momentum balance Incompressibility

Rheology
or

ρCp ∂T/ ∂t  =   A  +  K ∇2 T  - ρCp V·∇T

∇·v = 0∇.σd - ∇P + ρg = 0

Figure 3: Thermo-mechanics, rheology, geometry, and boundary
conditions of the numerical model. Diagrams depict (a) initial
geometry and (b) deformed geometry. Mechanical deformation is
considered for the crust only, which subjected to kinematic
boundary conditions at the Moho and a stress-free upper surface.
Below the crust the model is kinematic, with convergence of pro-
mantle lithosphere at constant velocity Vp (arrows), detachment at
S, and subduction beneath stationary retro-mantle (Vr = 0; dots).
The subducting slab is modelled kinematically and is deflected
vertically by an amount equal to the thickness of the isostatic crustal
root. Thermal model includes crust, and pro- and retro- mantle.
Thermal boundary conditions: no heat flux through lateral
boundaries; surface temperature T = 0°C; and constant heat flux at
the bottom, qm = 30 mW/m2. Temperature in the lithosphere is
limited by Ta = 1350°C (thermal diffusivity of asthenosphere is
very large to simulate thermal effect of convection). Initial
temperature profile in the model is calculated for conductive steady
state. Heat-producing layer (dark grey) has A1 = 2 µW/m3 and is
initially 20 km thick. Various rheologies and styles of isostasy
considered are described in Table 2. In the mechanical formulation,
σd = deviatoric stress; J2(σd)=second invariant of deviatoric stress
tensor; P = confining pressure; ε•    = strain rate. Other parameters,
units, and values as defined in Table 1 and Figs 1 and 2.
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200×27 elements for the crustal mechanical calculations, and
200×40 elements for the lithospheric scale thermal
calculations. The crustal Lagrangian grid has 500×27 elements.

Two types of models are investigated. In the first type
(Sections 4, and 5.1), both the mechanical and thermal
evolution are calculated and the dynamic (crustal) and
kinematic (sub-crustal) velocities are used in the thermal
advection. There is, however, no feedback coupling of thermal
properties to the mechanics because the model properties
(plasticity, viscosity, density) are either constant or do not
depend on temperature. In the second type (Sections 5.2 and
5.3), the mechanical evolution is coupled to thermal evolution,
but only through the temperature dependence of viscosity. In
both types the thermal calculation is made for the entire model
domain and the advection velocities are either specified
kinematically (sub-crustal region) or determined dynamically
(crustal region). The shape of the model domain changes with
time, but the boundary conditions are constant.

4. Models with Constant Rheological Properties

In order to investigate the rheological control on model
dynamics, we first describe results from models with uniform

viscous and frictional-plastic rheologies that do not change as
the model evolves. By first comparing models with no isostatic
compensation (Section 4.1), we focus on the fundamental
differences in rheological controls. The role of isostatic
compensation (flexural or local isostasy) is then assessed
(Section 4.2) based on models with similar uniform viscous
and frictional-plastic rheologies. The impact of deformation
style on thermal evolution is discussed in Section 4.3, using
models with simple rheologies in order to facilitate comparison
with the more complex rheological models discussed later. A
more detailed analysis of viscous wedges is developed
elsewhere (Medvedev, in press).

4.1 Mechanical Evolution of a Single-Layer Crust

The main features of these models can be described by
comparing a frictional-plastic model (φ = 11.3°) with uniform
constant viscosity models that are roughly similar in their
geometrical evolution (Fig. 4). Other parameter values are
given in Table 1 and the models are described in Table 2. In
these models convergence is accommodated by the progressive
development of back-to-back wedges. Pro-side velocities
reflect rigid transfer of material, and near-surface velocities
decrease in the vicinity of the singularity. The vertical velocity

Velocity-total

Deformation

Velocity- boundary conditions

Velocity-gravity

pV = 1 cm/y

pV = 1 cm/y
 50 km

V = 1 cm/yp V = 1 cm/yp

Deformation

Velocity

a) Frictional-plastic: φ = 11.3   (Rmφ = 5) b) Viscous: ηc= 5⋅1022 Pa⋅s (Rm* = 2)

c)Viscous: ηc= 1022 Pa⋅s (Rm* = 10) d) Viscous: ηc= 1023 Pa⋅s (Rm* = 1)

V = 1 cm/yp

V = 1 cm/yp

Figure 4: Comparison of frictional-plastic (a) and uniform constant viscous (b, c, d), model results at t = 30 My. Models have various Rm
and Rmφ values (see Fig. 1 and text) and no isostatic compensation. Upper panels of (a-d) show deformation of a coarse Lagrangian grid;
lines are passively advected markers. Lower panels of (a) and (b) show velocity distribution within the crust (short lines), basal boundary
velocity (heavy arrows and dots), and region of instantaneous extensional strain at the model surface (lines with two arrowheads). For (c)
and (d), the lower panels show the total velocity field, and decomposition of this field into components that are driven by the boundary
conditions (g = 0) and by gravity (Vp = 0).
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profile is inverted across the singularity with a transfer of the
maximum velocity from the base to the surface. The singularity
in the basal velocity at S imposes a localised thickening across
the detachment point marked by the activation of conjugate
shear-zones rooting at the singularity. The uplifted region has a
triangular geometry throughout the model evolution expressed
by a constant plateau coefficient (Appendix A), Kp ~0.5.

A decrease in the near-surface horizontal velocities
from the pro-side to the retro-side in the vicinity of S indicates
instantaneous horizontal extension in this region (Fig. 4a, b).
This is not observed at the onset of thickening and only appears
during the evolution of the model. Finite deformation of the
crustal layer, as delineated by the Lagrangian marker grid, is
characterised by the development of a broad antiform
overthrust along the retro-side shear zone.

The main differences between the uniform viscous and
frictional plastic models are in the symmetry of the back-to
back wedges and in the style of internal deformation. Back-to-
back wedges formed during the evolution of the frictional
plastic model do not show any visible asymmetry from 0 to 75
My (Fig. 4a). In contrast, the viscous model is asymmetric with
steeper slopes on the pro-side (Fig. 4b-d). The more diffuse
character of deformation in the viscous model compared to the
frictional-plastic one is evident from broader shear zones
emanating from S. In the frictional-plastic model, the orogen
grows by foreland propagation of the conjugate shear zones,
whereas in the viscous model growth is accompanied by
diffuse deformation ahead of the shear zones.

Comparison of wedges with differing viscosities
illustrates the influence of strength; the higher the viscosity, the
higher and narrower the wedge for a given amount of
convergence (Fig. 4 b-d). This behaviour is explained by the
effect of gravitational relaxation on a viscous wedge. The
lower panels in Fig. 4(c) and d show the relative contributions
of boundary conditions (flow calculated with g = 0) and
gravitational forces (flow calculated with Vp = 0) to the total
velocity field. The velocity field from the boundary conditions
is similar in both cases, but the velocity due to gravity, which
causes material to flow down thickness gradients, is larger for

low viscosities (high Rm), which explains the reduced
thickness of the corresponding wedges and supports the
predictions of Section 2 (eq. 2).

Owing to the simple approximately triangular
geometry, the evolution of the models can be described by the
maximum crustal thickness, hmax(t), at a given time, and the
averaged surface slope of the two back-to-back wedges (Fig.
5). The maximum thickness increases without limit; however,
the rate of increase of hmax(t) decreases with time (Fig. 5a)
because a constant mass flux into the wedges results in slower
growth as the wedges become larger. The rate of growth
depends on the rheology, with high η and high φ wedges
resulting in greater thickness. Model geometries for viscous
layers reflect their Rm ratios (Fig. 1), which range from Rm =
1 (ηc = 1023 Pa s) to Rm = 10 (ηc = 1022 Pa s) (Figs 4, 5), and
maximum thickness is inversely dependent on Rm.

Following Willett (1999), we introduce Rmφ, the
frictional-plastic analogue of Rm. When critical, frictional-
plastic tangential and normal stresses are related by τ =
σntanφ. When normal stress is approximately equal to the
lithostatic pressure, Rmφ = 1/tanφ, by analogy with the viscous

case (Fig. 1). The viscous and frictional-plastic Ramberg ratios
as defined here are not exactly equivalent because Rm is the
result of an approximate force balance calculation, whereas
Rmφ expresses critical behaviour of frictional-plastic wedges.

For example, a frictional-plastic model with Rmφ = 5 (φ  =

11.3°) has a closer correspondence to a viscous model with
Rm = 2 (ηc = 5×1022 Pa⋅s) than to one with Rm = 5 (ηc =
2×1022 Pa⋅s) (Fig. 5).

The difference between frictional-plastic and viscous
rheologies is more obvious when average slopes are compared
(Fig. 5b). The averaged mean slope is simply the ratio of
maximum elevation to half the horizontal length scale for each
of the back-to-back wedges. Initially, all models show
increasing average slope as they grow from an initially
horizontal layer to a mature wedge. Plastic wedges evolve in a
self-similar manner with constant slope. In contrast, viscous
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η = 2 1022.

φ = 7.5°
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η = 5 10220.2

0.1
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Figure 5: Evolution of maximum crustal thickness, hmax(t), and average surface slope, for uniform constant viscous (1022 ≤ ηc ≤ 1023 Pa s)
and frictional-plastic (φ = 11.3° and φ = 7.5°) models with no isostatic compensation. Some models correspond to those shown in Fig. 4.
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wedges evolve through three phases (Fig. 5b): the initial phase
occurs by vertical growth (increasing mean slope), the second
phase displays close to self-similar growth (approximately
constant mean slope), and the third phase involves horizontal
spreading that is faster than vertical growth (mean slope
decreases).  This qualitative difference can be explained using
the force balance approach introduced in Section 2. Similarly
to the viscous case, the three major forces (gravity,
compressive, and basal traction) control the evolution of the
frictional-plastic wedges, but they all grow proportionally
(Dahlen, 1984) resulting in self-similar evolution of the wedge
shape. The disproportionate relation between forces for the
viscous model (Fig. 1) results in several phases of wedge
evolution. The main source of the changes is in the decreasing
role of compressive force, Fc, which is still important during
the first two phases (Medvedev, in press). The average slope
decreases during the third phase in accordance to eq. (2), which
is derived ignoring Fc.

4.2 Effect of Isostatic Compensation Model

The effect of Airy and flexural (D = 1022 Nm) isostatic
compensation on uniform viscous (Rm = 1, ηc = 1023 Pa⋅s) and
frictional-plastic (Rmφ  = 7.6; φ  = 7.5°) models is compared
with the equivalent uncompensated models after 450 km of
convergence at Vp = 1 cm/y (Fig. 6). Isostatic compensation is
associated with the development of a thick crustal root and a
corresponding decrease in the overall width of the deformed
crust. Viscous wedges are asymmetric with maximum crustal
thickness on the retro-side.

In the flexural isostasy model (Fig. 6b), part of the
weight of the thickened zone is supported by flexural stresses
and compensation is achieved over a larger width than in the
case of local Airy isostasy (Fig. 6c). Consequently, flexural
isostatic compensation results in higher maximum elevations,
depressions on the edges of the thickened crust, and a more
symmetric root.

time = 45 My (∆x = 450 km)

Uniform viscosity

a) No compensation

c) Airy isostatic compensation

Uniform viscosity

Frictional-plastic

Uniform viscosity

Frictional-plastic
(model FP7.5-Airy)

Frictional-plastic

b) Flexural compensation

(model V23)

(model FP7.5)

(model V23-noIso)

(model FP7.5-noIso)

(model V23-Airy)

50 km

50 km

50 km

Figure 6: Effect of different styles of isostatic compensation on growth of plastic and viscous wedges. Each pair of diagrams shows the
geometry of the deformed crustal layer and velocity field for the models with a constant viscosity, ηc = 1023 Pa.s, (top) and frictional plastic
rheology, φ = 7.5°, (bottom) after 45 My of convergence at a constant rate, Vp = 1 cm/y. (a) No isostatic compensation. (b) Flexural
isostatic compensation calculated for a beam rigidity, D = 1022 N.m. (c) Airy (local) isostatic compensation. The models are aligned with
respect to S.
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The similarity of the flexural and Airy compensation
models depends on the relationship between the length scale of
deformed crust, λc, and the flexural parameter, λf =

2π(D/ρmg)1/4. When λc = 1.8λf  the difference between flexural
and Airy compensation does not exceed 5% of topography; this
is achieved at λc ~ 260 km for ρm = 3300 kg/m3 and D = 1022

Nm. To a first order, model geometry and velocity fields are
not sensitive to the choice of isostatic compensation model (D
≤1022 Nm), provided compensation is included, once the
length-scale of crustal deformation exceeds about 260 km (Fig.
6b, c). In the following models flexural isostatic compensation
is used with = 1022 Nm.

Frictional-plastic rheology (model FP7.5):

Deformation

Velocity

Pro-wedge

V = 1 cm/yp

V = 1 cm/yp

V = 1 cm/yp

Retro-wedge

Deformation

Deformation

700  C
400  C

700  C

400  C

 50 km

700  C

 50 km

a) time = 15 My (∆x = 150 km)

400  C

 50 km

Velocity

Velocity

b) time = 45 My (∆x = 450 km)

c) time = 75 My (∆x = 750 km)

Figure 7: Thermal and mechanical evolution of a model orogen with a frictional-plastic rheology (φ = 7.5°) and flexural isostatic
compensation (D = 1022 N.m).  Results are shown after (a) 15 My, (b) 45 My, and (c) 75 My of convergence at a constant velocity, Vp.
Upper panel of each pair shows deformation of a coarse Lagrangian grid. Lower panel of each pair shows velocity distribution within the
crust (short lines), basal boundary velocity (heavy arrows and dots), and region of instantaneous extensional strain at the model surface
(lines with two arrowheads). Isotherms are shown at 100°C intervals (dashed lines). Bold dashed lines delineate the 400°C and 700°C
isotherms.
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4.3 Thermal and Mechanical Evolution

The thermal and mechanical evolution of frictional-plastic (φ  =
7.5°) and uniform viscous (ηc = 1023 Pa.s) models over 75 My
is shown in Figs 7 and 8. In these models, convergence is
accommodated by the continuous growth of back-to-back

wedges (Kp = 0.5), which share the same general features as
those described in 4.1, except for the flexural crustal root.

The thermal evolution of both models is initially
dominated by the effect of subduction and crustal thickening;
the associated vertical advection causes vertical stretching of
the temperature field in the core of the model orogens (Figs 7a,

Uniform viscous rheology (model V23):

Velocity

V = 1 cm/yp

Velocity

Velocity

c)

Deformation

Deformation

Deformation

700  C
400  C

700  C

400  C

V = 1 cm/yp

V = 1 cm/yp

700  C

400  C

 50 km

 50 km

 50 km

a) time = 15 My (∆x = 150 km)

b) time = 45 My (∆x = 450 km)

c) time = 75 My (∆x = 750 km)

Figure 8: Thermal and mechanical evolution of a model orogen with a uniform constant viscous rheology (η = 1023 Pa s). Results are
shown after (a) 15 My, (b) 45 My, and (c) 75 My of convergence at constant Vp = 1 cm/y. Other information as in Fig. 7.



11

8a). This effect is opposed by an increase in temperature for
each material point owing to increased self-heating as the
radioactive layer thickens, which is evident by 45 My (Figs 7b.
8b). Heterogeneous thickening of the radioactive layer in the
frictional-plastic model (Fig. 7) leads to lateral variations in the
efficiency of self-heating and in the distribution of isotherms,
whereas a more homogeneous style of thickening in the
viscous model (Fig. 8) leads to more uniform heating.
Isotherms are inverted toward the edges of the model orogen
where vertical advection of heat is more efficient than
radioactive self-heating and diffusion.

In both models, crustal isotherms at 75 My reflect the
geometry of the deformed radioactive layer in the core of
orogen. The keel of radioactive material along the retro-step-up
shear zone leads to high temperatures and inverted isotherms
beneath the retro-wedge. Horizontal and vertical thermal
gradients are similar within the deep interiors of each of the
wedges (Figs 7c, 8c). Preferential thickening of the upper
crustal layer on the pro-side of the S-point in the frictional-
plastic case leads to maximum temperatures on the pro-side of
the system (Fig. 7c), whereas the more homogeneous
thickening of this layer in the uniform viscous model produces
a generally more symmetrical distribution of crustal isotherms
and maximum temperatures that coincide with the radioactive
keel beneath the retro-wedge (Fig. 8c). In both cases, lower
crustal isotherms are inverted beneath the thermal maximum
and isotherms cross the Moho at a high angle beneath the retro-
wedge.

5. Models with Depth- and Temperature-Dependent
Viscosities

Lower crustal weakening is the mechanism proposed in Section
2 for the transition between orogenic phases. Models with
simple depth- and temperature-dependent viscosities (Fig. 3)
were chosen to illustrate the effect of thermal weakening of the
crust, and to compare the results with those where depth is used
as a proxy for temperature (e.g. Royden, 1996; Shen et al.,
2001). Models in which there is a step change in viscosity at a
critical depth, z*, or temperature, T* (Table 2), are the
numerical equivalents of the conceptual scale models (Section
2) and may be compared directly. Models in which viscosity
decreases over a range of depth or temperature (Table 2) are
physically more reasonable and it is important to determine
whether these differ significantly from the step-change models.

5.1 Depth-Dependent Viscosity

The evolution of a typical model in which viscosity decreases
linearly from 1023 Pa.s to 1019 Pa.s between 40 and 50 km is
presented first (V(23/19)z(40/50); Fig. 9). The result for this
model at 75 My is then compared with other depth-dependent
viscosity models at the same time (Fig. 10). The evolution of
the topography, plateau coefficient (Kp), and effective width of
thickening (E(t)), for these models is then compared (Figs 11,
12) to determinethe properties of the lower crust required to
produce a plateau.

The evolution of V(23/19)z(40/50) (Fig. 9) can be
compared with that of the equivalent uniform viscosity model
UV(23) (Fig. 8). At 15 My, the only significant differences are

the greater overall symmetry and higher velocities in the lower
crust (Fig. 9a). By 45 My (Fig. 9b), an embryonic plateau has
developed above the thick, low-viscosity lower crustal layer.
At 75 My (Fig. 9c), these characteristics are more pronounced.
The plateau is now 300 km wide and the velocity field in the
plateau region indicates pure shear thickening in the upper
crust. In the lower crust there is a superimposed symmetric
outward flow from beneath the centre of the plateau. Its effect
is to enhance the retro-ward flow beneath the retro-plateau and
to diminish the flow beneath the pro-plateau; it is the net retro-
ward flow that accounts for retro-ward growth of the plateau.

The geometry and velocity fields (Fig. 9c) are
dramatically different from the uniform viscous case (Fig. 8c),
which can be understood from the analysis in Section 2. The
uniform viscous model corresponds closely to the back-to-
back wedge analysis (Fig. 1a), whereas the depth-dependent
viscosity model starts with a uniform viscosity but makes the
transition to the layered rheology (Fig. 1b); the associated
large decrease in Ft beneath the plateau accounts for the much
thinner plateau crust.

The thermal evolution of both models is initially
similar (Figs 8a, 9a) and is dominated by vertical advection.
The thermal structure in the depth-dependent viscosity model
is similar at both 45 My and 75 My, with the plateau underlain
by central hot and marginal cool lower crustal regions (Fig. 9
b, c). In the cool regions, temperatures are low owing to
relatively recent vertical advection and subduction cooling. In
contrast, the hot region has a keel of radioactive material in the
lower crust, and is conductively equilibrated because crustal
thickening occurred earlier.

The models (Fig. 10) illustrate the sensitivity of the
results to the viscosity decrease and depth range over which it
occurs. A value of ηb/ηc ~ 0.1 is not sufficient to create a
plateau even after 75 My, but leads to an intermediate double-
sloped wedge (Fig. 10a, Section 2). Models shown in Fig. 10(b
and c) have step changes in viscosity, with respective z* values
that bound the region of linear variation in V(23/19)z(40/50).
The results for V(23/19)z(40/50) and V(23/19)z(50) are very
similar, showing that models with linear variations in viscosity
can be closely reproduced by a step change if z* is chosen
appropriately. Model V(23/19)z(50) has significantly thicker
plateau crust than model V(23/19)z(40) (Fig. 10b and c) owing
to the larger z*, although both models have similar plateau
geometries (Kp ~ 0.7).

The quantitative analysis (Fig. 11) shows the
characteristic evolution of the three types of model and the
dependence on lower crustal viscosity. The results correspond
closely to the predictions of Section 2. The uniform viscosity
case, V23, evolves as back-to-back wedges, giving a triangular
topography (Kp ~ 0.5), progressively thickening crust, and
increasing E(t) (Fig.11a, d, e, f). Model V(23/22)z(40/50)
represents the double-slope wedge case with steep slopes
bounding a low-slope central region (Fig. 11b). The crustal
thickness approaches a maximum value (Fig. 11d), even
though a true plateau is not created (Kp < 0.65, Fig. 11e) and
E(t) increases throughout the model evolution (Fig. 11f).
Model V(23/19)z(40/50) represents the plateau case (Fig. 11c),
having constant hmax for the last 30 My of evolution (Fig.
11d), a large Kp > 0.65 (Fig. 11e), and a stabilised E(t) (Fig.
11f), all characteristic of plateaus (Appendix A).
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The results also illustrate the precursor decreases in
hmax and Kp and increase in E(t) (Fig. 11c, d, e, f) characteristic
of the transition to a plateau. The transition involves a decrease
in the early topographic maximum accompanied by retro-ward
growth of the wedge and initiation of a retro-edge topographic
peak (15-45 My, Fig. 11c). Following this transition, the retro-

and pro-edge peaks become balanced, with similar heights, and
a plateau with no significant surface slope develops between
them (45-75 My, Fig.11c). The transition to a plateau does not
result from a gradual decrease in surface slope in the central
part of the model orogen. Instead, two edge peak barriers are
created and the plateau grows between them. The growth of
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Figure 9: Thermal and mechanical evolution of model V(23/19)z(40/50) with depth-dependent viscosity. The viscosity of the crustal layer
in this experiment decreases linearly with depth from 1023 Pa.s to 1019 Pa.s between 40 km and 50 km. Results are shown for t = 15 My (a),
45 My (b), and 75 My (c). Upper panel for each pair shows the evolution of the Lagrangian grid and rheology in the crust. Lines are
passively advected markers and grey shades represent transition and low viscosity regions (schematic at right). The lower panel in each pair
shows velocity distribution in the crust (short solid lines), temperature distribution (dashed lines), and evolution of the radiogenic layer
(grey area). See Fig. 7 caption for additional information.
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the plateau implies decoupling of the crust from the mantle
beneath the plateau, as demonstrated by comparison of models
with 1020Pa.s>ηb>1018Pa.s. All models in this range have similar
topography and values of hmax, Kp, and E(t); the resemblance
to model V(23/19)z(40/50) demonstrates that these models are

decoupled and are no longer sensitive to the value of ηb, which
is consistent with the predictions in Section 2.

Fig. 12 extends the sensitivity analysis to consider the
effect of the critical depth, z*, on the transition to a plateau.
When ηb/ηc =10-2 (Fig. 12a), z*=40 km is insufficient to achi-
eve decoupling and the growth of a plateau, whereas, z*=50
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Figure 10: Effect of specific depth dependencies of viscosity. (a) Viscosity decreases linearly by factor of 10 between 40 km and 50 km
(model V(23/22)z(40/50)). In this case the result is the double-sloped wedge described in Section 2. In the two other experiments the
viscosity decreases by a factor of 104 at depth of 50 km (b), model V(23/19)z(40/50), and at 40 km (c), model V(23/19)z(40). See captions
Figs 7 and 9 for more details.
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km accomplishes this transition. The result illustrates the
inverse dependence of Ftb on thickness, hb, of the weak lower
crust (Fig, 1b), in agreement with the predictions, Section 2.
Although counter-intuitive, the greater z* (50 km) leads to
decoupling because the larger critical depth results in a thicker
crust, a thicker low-viscosity layer, and greater tendency to
decoupling and plateau formation (see Section 2). For a large
viscosity decrease (ηb/ηc =10-4, Fig. 12b), the plateau
transition occurs even for a thin basal layer. Both models have
plateaus because Ftb is small owing to the very low ηb, and is
no longer sensitive to hb (Fig. 1b), again in agreement with the
analysis, Section 2. A comparison of the evolution of Kp for
several models (Fig. 12c) demonstrates that the geometry is
relatively insensitive to ηb once the crust is decoupled from the
mantle and a plateau is established (Kp > 0.65).

5.2 Temperature-Dependent Viscosity

Temperature-dependent viscosity models were investigated for
comparison with the depth-dependent viscosity models, and
because temperature controls rheological weakening in natural
orogens. It was assumed either that viscosity decreases linearly
between 400 and 700 °C, corresponding to the range of ductile
weakening for crustal rocks, or that there is a step decrease in
viscosity at 700 °C, coinciding with the onset of partial
melting in crustal rocks.

Results from a model in which viscosity decreases
from 1023 Pa s to 1019 Pa⋅s between 400 and 700 °C (Fig. 13)
can be compared with the approximately equivalent depth-
dependent model (Fig. 9). At the largest scale the results are
similar. Both models develop plateaus by 75 My, even though
the viscosity in one case (Fig. 13) is controlled by the
temperature, which in both models shows a strong lateral
variation beneath the plateau (Figs 9c, 13c), and in the other
case by the crustal thickness (Fig. 9). Evidently, it makes little
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difference to plateau evolution whether the low-viscosity basal
layer is thick, as it is below the retro-plateau, or thin, as it is
more pro-ward (Fig. 13c), provided the basal traction, Ftb, is
small enough. This result implies that the crust beneath
plateaus need not be compositionally, structurally, or thermally
homogeneous, it only needs a sufficiently weak base, as
predicted in Section 2.

At smaller scales there are differences between the
models. The retro-ward propagation of the plateau is more
efficient in the depth-dependent viscosity model because
viscosity decreases as the crust thickens. In the temperature-

dependent viscosity model, temperature must first increase and
there is a corresponding delay in the outward crustal flow. This
difference accounts for the temperature inversion beneath the
retro-plateau (Fig. 13c), the different velocity variations with
depth, and the different crustal thickening styles (Figs 9c, 13c).

Results from other models with temperature-
dependent viscosities (Fig. 14) show that a decrease in
viscosity from 1023 to 1022 Pa⋅s is not sufficient to create a true
plateau (Fig. 14a). The basal traction remains high beneath the
pro-ward side of the plateau where a relatively thin region of
the basal crust exceeds 700°C. The overlying crust has wedge
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characteristics. Fig. 14(b) illustrates the result from model
FP(15)-V23/19)T(400/700), which is the same as that shown in
Fig. 13(c) except that the viscous stresses are limited by
frictional-plastic stresses (φ =15°). Generally, at high strain
rate, the upper part of the model behaves like the
corresponding frictional-plastic case, while lower strain rates
result in viscous behaviour. The similarity of the results at 75
My (Figs 13c, 14b) suggests that the dominant rheology is
viscous in both cases, reflecting low deformation rates in the
upper crust during the later, plateau stage of model evolution.
The early evolution of these models resembles the uniform
rheology models (Section 4.3, Figs 7, 8).

The topographic evolution of the temperature-
dependent viscosity models (Fig. 15) may be compared with

that of the approximately equivalent depth-dependent viscosity
model (Fig. 11). The comparison confirms the similarity of the
orogen-scale topographic evolution and the evolution of the
integrated geometrical parameters. The main difference
between the two types of models is that the temperature-
dependent viscosity models with the rheological transition
between 400 and 700 °C are pre-weakened (viscosity is 2–4
×1022 Pa⋅s at the base of the crust where temperature is higher
than 400°C, the lower limit of the rheological transition),
leading to minor differences in early model evolution. Despite
this initial weakening, the basal viscosity is sufficiently high
that the temperature-dependent viscosity models all behave as
viscous wedges during their first 20 My.
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Figure 14: Effect of different temperature-dependent rheologies on models after 75 My of convergence. (a) Model
V(23/22)T(400/700) in which viscosity decreases by a factor of 10 between 400°C and 700°C. Note a decrease of the surface
slope above the weak basal layer but no transition to a plateau. (b) Model FP(15)-V(23/19)T(400/700) is characterised by a visco-
plastic rheology, viscosity decreases from 1023 Pa.s to 1019 Pa.s between 400°C and 700°C. The rheology has a frictional-plastic
cap, φ = 15°, and cohesion of 106 Pa. Schematic rheology profile only depicts the viscous component. See caption Fig. 9 for other
details.
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The models presented so far were chosen to produce
thick plateau crust and high topography in order to emphasise
characteristic properties. Fig. 16 shows the sensitivity of
plateau elevation and corresponding crustal thickness to
variations in the radioactive heat production of the model crust.
Uniform radioactivity A2= 0.4 µW/m3 is introduced in the
lower crust in one model (dashed line, Fig. 16), and in a second
model the viscosity of the upper crust is also reduced by a
factor of two (dash-dot line, Fig. 16). The increase in
radioactive self-heating is offset by a decrease in the basal heat
flux in order to maintain the same surface heat flux as other
models. The effect is to produce model plateau elevations that
approach observations from Tibet and the Altiplano (ca. 5500
m). The important conclusion is that model plateau elevation
and crustal thickness are sensitive to the choice of upper crustal
viscosity, and secondarily to the distribution and amount of
crustal radioactivity. Reducing the upper crustal viscosity by a
factor of three to ca. 3×1022 Pa⋅s is all that is required to
produce more natural-looking plateaus.

5.3 Thermal Evolution of a Temperature-Dependent
Viscosity Model

Model V(23/19)T(700), in which there is a step decrease in
viscosity from 1023 to 1019 Pa⋅s at 700°C, is used for a more

detailed assessment of thermal evolution and its consequences
(Fig. 17). The average crustal viscosity for this model is higher
than that of V(23/19)T(400/700) (Fig. 13); the model orogen is
therefore narrower and thicker at 75 My, but otherwise has
similar characteristics.

The temperature at the base of the crust (TMoho) exerts
a fundamental control on basal traction, and thus on model
evolution. TMoho evolves in two phases (Fig. 17c). For t < 30
My, TMoho increases in the vicinity of S and decreases on the
retro-side where the temperature field is subjected to vertical
stretching above the subducting slab (see Section 2). By 45
My, TMoho > T*=700°C across a significant zone retro-ward of
S, leading to basal decoupling and the onset of the transition to
a plateau. The second phase (t > 45 My) corresponds to the
progressive retro-ward migration of the increasing temperature
maximum, growth of the region of thick crust, and the creation
of a plateau.

The relationship of TMoho to the thickening of the
crust, particularly the radioactive layer, can be assessed for the
central part of the orogen (region between dashed lines, Fig.
17c). For t < 30 My the vertical stretching of the temperature
field above the subducting slab dominates and TMoho decreases
even though hr increases (Fig. 17d). Between 35 and 60 My
TMoho and hr increase together. After 60 My a plateau has
formed and the crust now widens rather than thickens.
Therefore, the advective cooling caused by the vertical
stretching of the temperature field in the crust ends, allowing
TMoho to increase even though hr does not. The increase in
TMoho is enhanced by the keel of deeply buried radioactive crust
(Fig. 17a). Growth of this keel as the thickened crust is
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translated retro-ward contributes to the progressive increase of
TMoho beneath the retro-plateau for t > 45 My.

The temperature structure in the crust reflects
competition among heat production (R), advection during
vertical stretching (A), and conduction (C), as shown in Fig.
17(e) for the centre of the orogen (Fig. 17a, b). Consider the
relative effects of these components as the crust actively

thickens between 30 My and 75 My (Fig. 17d). The initial (t
=30 My) geotherm T30 is advected downward to TA by vertical
stretching alone. The added effect of heat production increases
temperature to TA+R; the two thermal peaks stem from the
upper crust and keel regions. Conduction diffuses the
temperature field and heat is lost at the surface, leading to the
final geotherm TA+R+C = T75 at 75 My (Fig. 17e, bold line).
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Middle to upper crustal temperatures mainly reflect heat
production and conduction, whereas the lower crust still retains
the effect of advection. There is a small temperature inversion
(larger at the retro-margin of the plateau, Fig. 17b) and TMoho is
lower than the initial geotherm projected to the same depth
(Fig. 17e). These effects combine to produce a crustal
temperature regime that is far from conductive steady-state and
a nearly isothermal lower crust with T~ 800-900°C.

A major difference between depth- and temperature-
dependent models can occur in the magnitude of Ftc (Fig.1b)
which acts to couple the wedges bounding the plateau to
underlying mantle lithosphere. As shown by the scale analysis
(Fig.1b) Ftc depends on z* and the length scale over which the
coupling is strong. In models with depth-dependent rheologies
(Section 5.1) the z* chosen, 40-50 km, limits the size of the
bounding wedges, and therefore the size of Ftc and the
thickness of the plateau crust. However, in the temperature-
dependent models vertical advection of the thermal field in the
bounding wedges (e.g. Figs13c and 17b) can increase z*
significantly with respect to its initial value, zinit, in the
undeformed lithosphere (e.g. Fig.17f, z*~75km, zinit~40km).
The coupling length scale correspondingly increases and
therefore the plateau crust is much thicker. The effective value
of z* (Fig.17f) is relatively stable in model V(23/19)T(700) and
therefore the thickness of the plateau crust changes little as the
plateau widens. In general, however, the thickness of the
plateau crust is sensitive to the thermally determined z* in the
bounding wedges. Therefore the choice of the thermal model
parameters and the convergence velocity can strongly influence
the thickness of plateau crust and the plateau height.

6. Discussion

Comparison among the models provides some insights into the
influence of simple rheologies on orogenesis and the extent to
which the basic properties of orogens can be approximated
with simple rheologies and the mantle subduction model.
These results should be compared and contrasted with the
models based on distributed whole lithosphere pure shear
deformation listed in the introduction. The models also begin to
address the validity of the “depth-dependent” assumption for
the viscosity within orogenic crust or, alternatively, whether
the viscosity should be related to a more complete calculation
of the thermal evolution. The models are, however, only simple
approximations of natural orogens and they are not designed
for comparison with particular orogens. Specific applications to
large hot orogens with plateaus (Beaumont et al., 2001a, b;
Jamieson et al., 2002) use models that are based on those
presented here but amploy frictional-plastic and thermally-
activated power-low creep rheologies and include surface
denudation and the approximate large-scale effects of crustal
melting. Such models have applications to the Himalayan-Tibet
orogen (Beaumont et al., 2001a, b) and possibly to the
Altiplano, the Grenvillian orogen and the Western Canadian
Cordillera (see Pope and Willett, 1998). However, the
complexity of these models tends to obscure some of the basic
properties that are best derived from the simple models
presented here.

When the crust is subject to uniform velocity
subduction basal boundary conditions with a fixed subduction

location, a crustal layer with uniform viscous or frictional-
plastic properties deforms to create bivergent back-to-back
tectonic wedges with no limit in size. These wedges may
undergo near-surface instantaneous extension, expressed as
extensional strain rate, but the crust continues to thicken and
the wedges continue to grow, in accordance with results from
analogue (Buck and Sokoutis, 1994) and numerical (Willett et
al., 1993; Royden, 1996; Willett, 1999) models. The overall
behaviour can be analysed using the force balance (Section 2)
in which horizontal compression and gravity oppose the basal
traction.

In a frictional-plastic crust, convergence is
accommodated by plug uplift and the growth of bounding
wedges that increase their tapers until a critical value is
achieved (Davis et al., 1983; Dahlen, 1984). Further growth
occurs at these tapers and the behaviour is characterised by
Rmφ (Fig. 5, see also Willett, 1999). Near-surface
instantaneous extension coeval with convergence can occur if
underthrusting beneath the wedge increases the taper and
causes extensional failure (Platt, 1986).

A viscous crust initially responds by dominantly local
thickening and vertical growth governed by the competition
between basal traction and horizontal viscous compressional
forces. Later, as the wedges thicken, lateral gradients in
gravitational potential energy increase the forces driving
lateral spreading. At this stage wedge evolution is
characterised by Rm (Figs 1a, 5). Near-surface extension
occurs when viscous relaxation exceeds contraction (Willett,
1999; Medvedev, in press).

In subduction-driven models, the formation of a
plateau requires a decrease in basal traction. This is achieved
in the present models by a reduction of strength with depth or
temperature. Royden (1996) and Shen et al. (2001) reached the
same conclusion based on models with depth-dependent
viscosities and basal velocity boundary conditions. In contrast,
models in which it is assumed that velocity does not vary with
depth are overconstrained because strain cannot be partitioned
with depth. Such models (e.g. England and Houseman, 1988)
actually predict that lithospheric weakening leads to local
thickening. In the current models, a reduction in the viscosity
ratio, ηb/ηc ~ 10-2, is sufficient to cause the transition from
wedge to plateau, but this transition also depends on hb (Fig.
1b) because it is the basal traction, Ftb, that must decrease
beneath the plateau. Further reduction of the viscosity ratio has
no additional influence on the models because the plateau is
now decoupled from the basal traction and the behaviour is
governed by the relation between Ftc and Fg (Fig. 1b), which
no longer depends on ηb and hb.

The model results also provide information on the
form of the transition from wedge to plateau, showing, for
example through the evolution of Kp and E(t), that a wedge
geometry is initially preserved despite the development of a
significant amount of lower-crustal low viscosity material. A
plateau does not develop at the onset of basal weakening, but
instead the model evolves through the double-wedge phase
before full basal decoupling is achieved. In some models, the
transition is also accompanied by significant thinning of
previously thickened crust, which is interpreted as a release of
potential energy which cannot be sustained when the basal
traction decreases. Plateau-edge topographic peaks are a
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feature of the numerical models and are also expected to occur
in nature (Medvedev et al., 2000). They are spatially correlated
with places where the basal boundary condition, or traction,
changes abruptly from coupled to decoupled and the converse.
Models of ice streams (Barcilon and MacAyeal, 1993) show a
similar decrease in topography across the transition from no-
slip to free-slip on their base, suggesting that the topographic
variation is linked to large lateral variations in effective
viscosity (Medvedev et al., 2000).

Under what circumstances is the use of depth as a
proxy for temperature valid in the study of model orogens, and
in particular in parameterising the wedge-plateau transition?
This assumption, used for example by Royden (1996) and Shen
et al. (2001), appears unrealistic when the thermal structure of
the crust departs strongly from a vertical conductive
equilibrium, as it does in all of the models presented here. Most
models (e.g. Figs 9b, c, 10, 13c, 14) have large lateral contrasts
in their temperature fields between the pro- and retro-plateau
crusts. Consequently, the evolving viscosity structure differs
dramatically from that predicted by a model with a depth-
dependent viscosity calibrated to give the same initial viscosity
structure. The question can be answered at two levels - in terms
of the large-scale model geometry, and in terms of the finer
internal structure of the plateau crust.

At a large scale, the model geometries of some depth-
dependent and temperature-dependent models (e.g.
V(23/19)z(40/50), Fig. 9; V(23/19)T(400/700), Fig. 13) are
more alike than their viscosity structures suggest. This holds
where both parameterisations predict full decoupling of the
lower crust from the basal traction and, therefore, little
sensitivity to the viscosity ratio ηb/ηc, or hb and its lateral
variation. In particular, the four orders in magnitude decrease
in viscosity with depth and the thickness of the weak basal
layer guarantee that both approaches yield similar first-order
results. The differences would be much greater if the viscosity
decrease was only one order of magnitude. In summary, once a
plateau exists, its geometry is only weakly dependent on the
viscosity distribution within the plateau crust. This does not
demonstrate the validity of the depth-dependent viscosity
model, it only indicates that under these limiting conditions,
both approaches yield similar results.

At the finer scale, the velocity and deformation fields
of the depth- and temperature-dependent models do differ,
particularly beneath the central/retro-plateau where the
viscosity distributions are quite different (e.g. Figs 9, 13). For
example, retro-ward extrusion is confined to the lower crust in
the depth-dependent model but is more distributed in the
temperature-dependent model. Other properties such as
metamorphic facies distributions, regions of partial melting,
and surface heat flux would, however, be similar for both
models.

The thermal evolution of both depth- and temperature-
dependent models that form plateaus is similar and can be
described in terms of the back-to-back wedge and plateau
phases. The analysis presented in Section 2 indicates how the
heat balancewill differ between the two phases. For the
parameter values used here, all three components of the heat
balance (advection, conduction, and radioactive self-heating)
are important during the first orogenic phase. This is dominated
by crustal thickening and subduction, which imply that vertical

advection of heat and increased vertically integrated
radioactive self-heating strongly perturb the steady-state
conductive regime (Fig. 17). The thermal effects of crustal
thickening remain important in the bounding wedges during
the second orogenic phase. However, beneath the plateau,
thickening and vertical advection cease within the crust, the
rate of radioactive self-heating becomes constant, and the crust
thermally relaxes toward a new steady state. Horizontal
advection of heat is now important because at the largest scale
the plateau crust is transported retro-ward as the plateau grows.
The thermal regime of the plateau crust can therefore be
divided into three main regions, the cold retro- and pro-plateau
flanks where recently thickened crust has not had time to
thermally relax, and the older, hot central plateau that is
thermally relaxed.

The numerical model results generally confirm the
thermal scale analysis described above. The main difference is
caused by heterogeneous crustal thickening during phase one.
The resulting keels of radioactive upper crust buried in the
lower crust augment the effect of radioactive self-heating in
the central part of the plateau (e.g. Figs  9, 10, 13, 14). This
heterogeneous thickening occurs in all models that are driven
by basal subduction and that are initially coupled to the basal
traction.

7. Conclusions

For the boundary conditions and parameters used in these
models (Table 1), including basal subduction at constant
velocity, Vp, and simple frictional-plastic and viscous
rheologies, we can draw the following conclusions concerning
the controls on orogenic wedges and plateaus and the
transition between them.

1) Deformation of crustal layers with constant
rheologic behaviour (frictional-plastic or constant viscous)
leads to the growth of back-to-back wedges with no limit in
crustal thickness. Wedge taper is inversely dependent on Rm:
increasing Vp or ηc, decreasing ρc (viscous wedges), or
increasing φ (frictional-plastic wedges), produces narrower and
thicker wedges. The taper evolves with time for viscous
models, while in frictional-plastic models, critical taper, once
achieved, is maintained.

2) Models that are characterised by a decrease in
crustal viscosity from ηc to ηb with depth or temperature,
leading to partial or full basal decoupling, display more
complex behaviour. For models with moderate ηb/ηc, the
crustal wedges have dual tapers with a lower taper in the
central region and a higher taper on the edges of the deformed
crust. A viscosity ratio ηb/ηc ~ 10-2 is sufficient to cause the
transition from wedge to plateau, but this transition also
depends on hb because of the effect of basal traction.

3) Values of ηb/ηc ~ 10-4 lead to plateaus in all cases
because the lower crust is now fully decoupled from the basal
traction. In these cases, large-scale model geometries for both
depth- and temperature-dependent rheologies are similar and
gravity-driven flow is concentrated in the low viscosity region.
In most models, the plateaus grow laterally at constant
thickness between characteristic edge peaks which are
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probably associated with the transitions from coupling to
decoupling beneath the plateau flanks.

4) Except beneath the central region of a mature
plateau, the models depart significantly from conductive
steady-state, with strong lateral temperature gradients
controlled by the interaction of horizontal and vertical thermal
advection, diffusion, and heterogeneous thickening of the
radioactive crustal layer. These lead to differences in the
velocity and deformation fields between models with depth- vs.
temperature-dependent rheologies, particularly at the plateau
margins. Although simple depth-dependent viscosity models
may be reasonable approximations for describing the large-
scale geometry of fully developed plateaus, they are not
appropriate for describing the internal features of large
orogenic systems or the transition from wedge to plateau
geometry.
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Appendix A. Quantitative definition of a plateau

A.1. Geometrical characteristics: the plateau coefficient,
Kp(t)

We define a perfect plateau as a region of significant surface
uplift with perfectly flat topography and vertical sides. In 2D,
the perfect plateau equivalent of a region of high topography
(grey, Fig. A1a) is a rectangle (dashed line, Fig. A1a) with
height, hp, equal to 80% of the maximum elevation and width,

p, equal to the width of the highland within the 80% region.
The lowest 20% of the elevated region, w(x,t) ≠ 0, is not
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Figure A1: Definitions of Kp(t) and E(t) and examples of their evolution for variations on model V(23/n)z40 (depth-dependent

viscosity with a step function in viscosity, c = 1023 and b = 10n, with the viscosity transition at depth z* = 40 km; Table 2).
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considered to avoid the possible influence of small topographic
variations outside the main orogenic structure. The plateau
coefficient, Kp(t), is defined as the ratio of the cross-sectional
area of the elevated region, At (shaded on Fig. A1a), to the
cross-sectional area of the corresponding perfect plateau, Ap,
multiplied by the geometrical factor, r (Fig. A1a). r should be
close to 1 when p >> hp, in keeping with the view that
plateaus are much wider than they are high.

A perfect plateau has Kp = 1, and triangular back-to-
back wedges have Kp ~ 0.5. The value of Kp is not very
sensitive to the choice of the cut-off percentage used to define
the perfect plateau. Natural plateaus, including the Tibetan
plateau (Fielding et al., 1994; Neil and Houseman, 1997) have
Kp ~ 0.8.

Fig. A1(b) shows the evolution of Kp(t) for models
with depth-dependent rheologies with different values of basal
viscosity. The uniform viscous model ( c = b = 1023) has Kp(t)
~ 0.5, reflecting its triangular shape throughout the model
evolution, whereas Kp(t) changes significantly during the
evolution of models that develop a low viscosity layer. The
initial geometry of orogens is triangular (Kp ~ 0.5), and in
some cases evolves to a double-triangle shape (Kp �� ���; see
Figs 11b and 11c at 30 My). When b is sufficiently small (~
1020 - 1018 Pa s), the two peaks become balanced, with similar
heights, and a plateau with no significant surface slope
develops between them (Kp > 0.65, see details in Section 5.1).

A.2. Dynamic characteristics: the effective width of
thickening, E(t)

The effective width of thickening, E(t), measures the
distribution of crustal thickening as an orogen evolves, and
reflects the size of the zone where the shape of the orogenic
crust is actively changing (Fig. A1c). A rectangle with width E
and height equal to the maximum thickening (δhmax) is defined
such that it has an area equal to the total change of thickness
during time increment � (grey area, Fig. A1c), and therefore
equal to the flux of material added to the orogen during �.
During the growth of back-to-back wedges, E(t) continues to
increase with time. In contrast, during the growth of plateau
where continued convergence is accommodated by widening of
the model orogen rather than thickening, E(t) reaches a
constant value. Therefore the wedge/plateau transition is
associated to the stabilisation of E(t) at a constant value (Fig.
A1d).

Consideration of both Kp(t) and E(t) allows a more
precise analysis of the general behaviour of orogens and
provides simple measures for the transition from the growth of
wedges to the growth of a plateau. An analysis of shape, Kp(t)

and E(t) form many numerical models suggests that Kp*=0.65
can be used to indicate the onset of plateau-like behaviour.


